The therapeutic mechanisms of subthalamic nucleus (STN) deep brain stimulation (DBS) may depend on antidromic activation of cortex via the hyperdirect pathway. However, hyperdirect pathway neurons cannot reliably follow high-stimulation frequencies, and the spike failure rate appears to correlate with symptom relief as a function of stimulation frequency. We hypothesized that antidromic spike failure contributes to the cortical desynchronization caused by DBS. We measured evoked cortical activity in female Sprague Dawley rats and developed a computational model of cortical activation from STN DBS. We modeled stochastic antidromic spike failure to determine how spike failure affected the desynchronization of pathophysiological oscillatory activity in cortex. We found that high-frequency STN DBS desynchronized pathologic oscillations via the masking of intrinsic spiking through a combination of spike collision, refractoriness, and synaptic depletion. Antidromic spike failure shaped the parabolic relationship between DBS frequency and cortical desynchronization, with maximum desynchronization at ∼130 Hz. These findings reveal that antidromic spike failure plays a critical role in mediating the dependency of symptom relief on stimulation frequency. Deep brain stimulation (DBS) is a highly effective neuromodulation therapy, yet it remains uncertain why conventionally used stimulation frequencies (e.g., ∼130 Hz) are optimal. In this study, we demonstrate a potential explanation for the stimulation frequency dependency of DBS through a combination of experimental measurements and computational modeling. We show that high-frequency stimulation can desynchronize pathologic firing patterns in populations of neurons by inducing an informational lesion. However, sporadic spike failure at these high frequencies limits the efficacy of the informational lesion, yielding a parabolic profile with optimal effects at ∼130 Hz. This work provides a potential explanation for the therapeutic mechanism of DBS, and highlights the importance of considering spike failure in mechanistic models of DBS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10324992PMC
http://dx.doi.org/10.1523/JNEUROSCI.1798-22.2023DOI Listing

Publication Analysis

Top Keywords

spike failure
36
antidromic spike
20
deep brain
12
brain stimulation
12
stimulation frequency
12
spike
10
failure
9
dbs
9
subthalamic nucleus
8
stimulation
8

Similar Publications

Circuit dysfunction in autism may involve a failure of homeostatic plasticity. To test this, we studied parvalbumin (PV) interneurons which exhibit rapid homeostatic plasticity of intrinsic excitability following whisker deprivation in mouse somatosensory cortex. Brief deprivation reduces PV excitability by increasing Kv1 current to increase PV spike threshold.

View Article and Find Full Text PDF

Obstructive sleep apnea (OSA), a highly prevalent and serious disorder with significant complications, causes considerable daytime and nighttime symptoms as well as long-term consequences and is yet an underdiagnosed and inadequately treated condition. Patients with OSA undergo frequent awakenings during the sleep cycle and find it impossible to get restorative sleep. Individuals are extremely fatigued, sleepy, and irritable throughout the day.

View Article and Find Full Text PDF

Adaptive behavior depends on the ability to predict specific events, particularly those related to rewards. Armed with such associative information, we can infer the current value of predicted rewards based on changing circumstances and desires. To support this ability, neural systems must represent both the value and identity of predicted rewards, and these representations must be updated when they change.

View Article and Find Full Text PDF

Detecting Hypoxia Through the Non-Invasive and Simultaneous Monitoring of Sweat Lactate and Tissue Oxygenation.

Biosensors (Basel)

November 2024

Department of Chemistry, University of Waterloo, 200 University Ave West, Waterloo, ON N2L 3G1, Canada.

Hypoxia, characterized by inadequate tissue oxygenation, may result in tissue damage and organ failure if not addressed. Current detection approaches frequently prove insufficient, depending on symptoms and rudimentary metrics such as tissue oxygenation, which fail to comprehensively identify the onset of hypoxia. The European Pressure Ulcer Advisory Panel (EPUAP) has recognized sweat lactate as a possible marker for the early identification of decubitus ulcers, nevertheless, neither sweat lactate nor oxygenation independently provides an appropriate diagnosis of hypoxia.

View Article and Find Full Text PDF

Objective: Loss-of-function mutations in the GIRDIN/CCDC88A gene cause developmental epileptic encephalopathy (DEE) in humans. However, its pathogenesis is largely unknown. Global knockout mice of the corresponding orthologous gene (gKOs) have a preweaning lethal phenotype with growth failure, preventing longitudinal analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!