Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Many complex public health evidence gaps cannot be fully resolved using only conventional public health methods. We aim to familiarise public health researchers with selected systems science methods that may contribute to a better understanding of complex phenomena and lead to more impactful interventions. As a case study, we choose the current cost-of-living crisis, which affects disposable income as a key structural determinant of health.
Methods: We first outline the potential role of systems science methods for public health research more generally, then provide an overview of the complexity of the cost-of-living crisis as a specific case study. We propose how four systems science methods (soft systems, microsimulation, agent-based and system dynamics models) could be applied to provide more in-depth understanding. For each method, we illustrate its unique knowledge contributions, and set out one or more options for studies that could help inform policy and practice responses.
Results: Due to its fundamental impact on the determinants of health, while limiting resources for population-level interventions, the cost-of-living crisis presents a complex public health challenge. When confronted with complexity, non-linearity, feedback loops and adaptation processes, systems methods allow a deeper understanding and forecasting of the interactions and spill-over effects common with real-world interventions and policies.
Conclusions: Systems science methods provide a rich methodological toolbox that complements our traditional public health methods. This toolbox may be particularly useful in early stages of the current cost-of-living crisis: for understanding the situation, developing solutions and sandboxing potential responses to improve population health.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10423532 | PMC |
http://dx.doi.org/10.1136/jech-2023-220435 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!