Creation of a novel synthetic amniotic fluid for use in fetal therapy with in vitro testing on human amniotic membranes.

Am J Obstet Gynecol MFM

Center for Fetal and Placental Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH (Drs Forde and Oria, Ms Lampe, Mr Martin, and Dr Peiro); Division of Pediatric Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH (Drs Oria and Peiro); University of Cincinnati Medical College, Cincinnati, OH (Drs Forde, Oria, and Peiro).

Published: September 2023

Background: Normal saline or lactated Ringer's solutions are usually infused at the time of fetal interventions; however, the effect of these fluids on the amniotic membranes has never been assessed. Given both the significant differences between the composition of normal saline solution, lactated Ringer's solution, and amniotic fluid and the significant risk of prematurity after fetal interventions, an investigation is warranted.

Objective: This study aimed to evaluate the effect of current amnioinfusion fluids on the human amnion compared with a novel synthetic amniotic fluid.

Study Design: Amniotic epithelial cells from term placentas were isolated and cultured per protocol. A synthetic amniotic fluid was created with similar electrolyte, pH, albumin, and glucose concentrations to human amniotic fluid, termed "Amnio-well." The cultured human amniotic epithelium was exposed to normal saline solution, lactated Ringer's solution, and Amnio-well. As a control, 1 group of cells remained in culture media. Cells were evaluated for apoptosis and necrosis. A second analysis to examine if cells could be "rescued" was performed, wherein the cells were allowed to remain in the culture media for an additional 48 hours after amnioinfusion. Subsequently, tissue testing with human amniotic membrane explants was evaluated similarly. Immunofluorescent intensity studies were undertaken to evaluate reactive oxygen species-mediated cell damage. Real-time quantitative polymerase chain reaction was used to evaluate gene expression in apoptotic pathways.

Results: With simulated amnioinfusion, 44%, 52%, and 89% of amniotic epithelial cells were alive after exposure to normal saline solution, lactated Ringer's solution, and Amnio-well, respectively, compared with 85% in control (P<.001). After amnioinfusion and attempted cell rescue, 21%, 44%, 94%, and 88% of cells were alive after exposure to normal saline solution, lactated Ringer's solution, Amnio-well, and control, respectively (P<.001). In simulated amnioinfusion with full-thickness tissue explants, 68%, 80%, 93%, and 96% of cells were viable in normal saline solution, lactated Ringer's solution, Amnio-well, and control, respectively (P<.001). In culture, reactive oxygen species production was higher in normal saline solution, lactated Ringer's solution, and Amnio-well than in control (4.9-, 6.6-, and 1.8-fold higher, respectively, P<.001); however, this could be mitigated in Amnio-well by adding ulin-A-statin and ascorbic acid. Gene expression data revealed abnormal signaling in the p21 and BCL2/BAX pathways with normal saline solution compared with control (P=.006 and P=.041); changes were not seen with Amnio-well.

Conclusion: In vitro, normal saline and lactated Ringer's solutions caused increased amniotic membrane reactive oxygen species and cell death. The use of a novel fluid similar to human amniotic fluid led to the normalization of cellular signaling and less cell death.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajogmf.2023.101055DOI Listing

Publication Analysis

Top Keywords

amniotic fluid
16
human amniotic
16
normal saline
16
lactated ringer's
16
synthetic amniotic
12
saline solution
12
solution lactated
12
ringer's solution
12
amniotic
11
novel synthetic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!