Sigma 1 receptor (Sig1R), a pluripotent modulator of cell survival, is neuroprotective in models of retinal degeneration when activated by the high-affinity, high-specificity ligand (+)-pentazocine ((+)-PTZ). The molecular mechanisms of Sig1R-mediated retinal neuroprotection are under investigation. We previously reported that the antioxidant regulatory transcription factor Nrf2 may be involved in Sig1R-mediated retinal photoreceptor cell (PRC) rescue. Cullin 3 (Cul3) is a component of the Nrf2-Keap1 antioxidant pathway and facilitates Nrf2 ubiquitination. Our earlier transcriptome analysis revealed decreased Cul3 in retinas lacking Sig1R. Here, we asked whether Sig1R activation can modulate Cul3 expression in 661 W cone PRCs. Proximity ligation and co-immunoprecipitation (co-IP) showed that Cul3 resides closely to and co-IPs with Sig1R. Activation of Sig1R using (+)-PTZ significantly increased Cul3 at the gene/protein level; silencing Sig1R decreased Cul3 gene/protein levels. Experiments in which Cul3 was silenced in cells exposed to tBHP resulted in increased oxidative stress, which was not attenuated with Sig1R activation by (+)-PTZ, whereas cells transfected with scrambled siRNA (and incubated with tBHP) responded to (+)-PTZ treatment by decreasing levels of oxidative stress. Assessment of mitochondrial respiration and glycolysis revealed significantly improved maximal respiration, spare capacity and glycolytic capacity in oxidatively-stressed cells transfected with scrambled siRNA and treated with (+)-PTZ, but not in (+)-PTZ treated, oxidatively-stressed cells in which Cul3 had been silenced. The data provide the first evidence that Sig1R co-localizes/interacts with Cul3, a key player in the Nrf2-Keap1 antioxidant pathway. The data suggest that the preservation of mitochondrial respiration/glycolytic function and reduction of oxidative stress observed upon activation of Sig1R occur in part in a Cul3-dependent manner.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10527355 | PMC |
http://dx.doi.org/10.1016/j.freeradbiomed.2023.06.010 | DOI Listing |
J Environ Sci (China)
June 2025
Neurosurgery Department, Institute of Neuroscience, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang 222000, China. Electronic address:
Free Radic Biol Med
January 2025
Department of Anesthesiology, Anesthesiology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China. Electronic address:
Background: Endothelial cells are the first and most damaged target cells during acute lung injury (ALI). Endothelial dysfunction increases pulmonary microvascular permeability, subsequently leading to pulmonary oedema and organ dysfunction; however, clinical treatments against microvascular permeability show poor efficacy. Herein, we aimed to explore the role of the Sigma-1 receptor (Sig-1R) in pulmonary microvascular permeability by constructing ALI animal and cell models, and further investigated the specific mechanisms.
View Article and Find Full Text PDFEpilepsia
August 2024
Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany.
Objective: Given its key homeostatic role affecting mitochondria, ionotropic and metabotropic receptors, and voltage-gated ion channels, sigma-1 receptor (Sig1R) represents an interesting target for epilepsy management. Antiseizure effects of the positive allosteric modulator E1R have already been reported in acute seizure models. Although modulation of serotonergic neurotransmission is considered the main mechanism of action of fenfluramine, its interaction with Sig1R may be of additional relevance.
View Article and Find Full Text PDFBrain Res
September 2024
Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, PR China. Electronic address:
Spinal Cord Injury (SCI) is a debilitating disease associated with a significant economic burden owing to its high level of disability; however, current treatment options have only limited efficacy. Past research has shown that iron-dependent programmed cell death, also known as ferroptosis, plays a critical role in the pathogenesis of SCI. The sigma-1 receptor (Sig-1R) is widely distributed in the central nervous system, and has been implicated in the pathophysiology of several neurological and psychiatric disorders.
View Article and Find Full Text PDFAlzheimers Res Ther
May 2024
Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China.
Background: Aberrant neuronal Sigma-1 receptor (Sig-1r)-mediated endoplasmic reticulum (ER)- mitochondria signaling plays a key role in the neuronal cytopathology of Alzheimer's disease (AD). The natural psychedelic N, N-dimethyltryptamine (DMT) is a Sig-1r agonist that may have the anti-AD potential through protecting neuronal ER-mitochondrial interplay.
Methods: 3×TG-AD transgenic mice were administered with chronic DMT (2 mg/kg) for 3 weeks and then performed water maze test.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!