Seascape connectivity increases carbon and nitrogen exchange across coastal ecosystems through flow of particulate organic matter (POM). However, there are still critical gaps in knowledge about the drivers that mediate these processes, especially at regional seascape scales. The aim of this study was to associate three seascape-level drivers which could influence carbon and nitrogen stocks in intertidal coastal seascape: connectivity between ecosystems, ecosystem surface area, and standing vegetation biomass of ecosystems. Firstly, we compared whether connected mangrove and seagrass ecosystems contain larger carbon and nitrogen storage than isolated mangrove and seagrass ecosystems. Secondly, we compared autochthonous and allochthonous POM in mangrove patches and seagrass beds, simultaneously estimating the area and biomass relative contribution to POM of the different coastal vegetated ecosystem. Connected vs isolated mangrove and seagrass ecosystems were studied at six locations in a temperate seascape, and their carbon and nitrogen content in the standing vegetation biomass and sediments were measured. POM contributions of these and surrounding ecosystems were determined using stable isotopic tracers. In connected mangrove-seagrass seascapes, mangroves occupied 3 % of total coastal ecosystem surface area, however, their standing biomass carbon content and nitrogen per unit area was 9-12 times higher than seagrasses and twice as high as macroalgal beds (both in connected and isolated seascapes). Additionally in connected mangrove-seagrass seascapes, the largest contributors to POM were mangroves (10-50 %) and macroalgal beds (20-50 %). In isolated seagrasses, seagrass (37-77 %) and macroalgal thalli (9-43 %) contributed the most, whilst in the isolated mangrove, salt marshes were the main contributor (17-47 %). Seagrass connectivity enhances mangrove carbon sequestration per unit area, whilst internal attributes enhance seagrass carbon sequestration. Mangroves and macroalgal beds are potential critical contributors of nitrogen and carbon to other ecosystems. Considering all ecosystems as a continuing system with seascape-level connectivity will support management and improve knowledge of critical ecosystem services.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.164829DOI Listing

Publication Analysis

Top Keywords

carbon nitrogen
20
mangrove seagrass
16
seagrass ecosystems
16
isolated mangrove
12
macroalgal beds
12
ecosystems
10
carbon
9
nitrogen stocks
8
seagrass
8
seascape connectivity
8

Similar Publications

Divergent responses of plant multi-element coupling to nitrogen and phosphorus addition in a meadow steppe.

BMC Plant Biol

January 2025

Institute of Grassland Science, School of Life Sciences, Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China.

The intricate biogeochemical cycling of multiple elements plays a pivotal role in upholding a myriad of ecosystem functions. However, our understanding of elemental stoichiometry and coupling in response to global changes remains primarily limited to plant carbon: nitrogen: phosphorus (C: N: P). Here, we assessed the responses of 11 elements in plants from different functional groups to global changes.

View Article and Find Full Text PDF

MarR family regulator LcbR2 activates lincomycin biosynthesis in multiple ways.

Int J Biol Macromol

January 2025

Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China.

Lincomycin, produced by the actinomycete Streptomyces lincolnensis, is highly effective against Gram-positive bacteria and protozoans, making it widely used in clinical settings. This study identified LcbR2, a MarR family transcriptional regulator, as an activator of lincomycin biosynthesis. Knocking out the lcbR2 gene reduced lincomycin production by 63.

View Article and Find Full Text PDF

Background: Air pollution has been linked to respiratory diseases, while the effects of greenness remain inconclusive.

Objective: We investigated the associations between exposure to particulate matter (PM and PM), black carbon (BC), nitrogen dioxide (NO), ozone (O), and greenness (normalized difference vegetation index, NDVI) with respiratory emergency room visits and hospitalizations across seven Northern European centers in the European Community Respiratory Health Survey (ECRHS) study.

Methods: We used modified mixed-effects Poisson regression to analyze associations of exposure in 1990, 2000 and mean exposure 1990-2000 with respiratory outcomes recorded duing ECRHS phases II and III.

View Article and Find Full Text PDF

In-situ engineering of centralized mesopores and edge nitrogen for porous carbons toward zinc ion hybrid capacitors.

J Colloid Interface Sci

January 2025

School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University (GXU), 100 Daxuedong Road, Xixiangtang District, Nanning 530004 China. Electronic address:

Porous carbons with large surface area (>3000 m/g) and heteroatom dopants have shown great promise as electrode materials for zinc ion hybrid capacitors. Centralized mesopores are effective to accelerate kinetics, and edge nitrogen can efficiently enhance pseudocapacitive capability. It is a great challenge to engineer centralized mesopores and edge nitrogen in large-surface-area porous carbons.

View Article and Find Full Text PDF

Thiocyanate (SCN) is a highly toxic reducing inorganic compound commonly found in various nitrogen-rich wastewater and is also a promising electron donor for mixotrophic denitrification. However, its extent of involvement in mixotrophic denitrification under conditions of carbon limitation or excess remains unclear. In this study, five reactors were constructed to investigate the participation and microbial mechanisms of SCN in mixotrophic denitrification under high C/N and low C/N conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!