This paper presents a novel framework for breast cancer detection using mammogram images. The proposed solution aims to output an explainable classification from a mammogram image. The classification approach uses a Case-Based Reasoning system (CBR). CBR accuracy strongly depends on the quality of the extracted features. To achieve relevant classification, we propose a pipeline that includes image enhancement and data augmentation to improve the quality of extracted features and provide a final diagnosis. An efficient segmentation method based on a U-Net architecture is used to extract Regions of interest (RoI) from mammograms. The purpose is to combine deep learning (DL) with CBR to improve classification accuracy. DL provides accurate mammogram segmentation, while CBR gives an explainable and accurate classification. The proposed approach was tested on the CBIS-DDSM dataset and achieved high performance with an accuracy (Acc) of 86.71 % and a recall of 91.34 %, outperforming some well-known machine learning (ML) and DL approaches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2023.107133 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!