Background And Objective: The development of deep learning has led to significant improvements in the decoding accuracy of Motor Imagery (MI) EEG signal classification. However, current models are inadequate in ensuring high levels of classification accuracy for an individual. Since MI EEG data is primarily used in medical rehabilitation and intelligent control, it is crucial to ensure that each individual's EEG signal is recognized with precision.
Methods: We propose a multi-branch graph adaptive network (MBGA-Net), which matches each individual EEG signal with a suitable time-frequency domain processing method based on spatio-temporal domain features. We then feed the signal into the relevant model branch using an adaptive technique. Through an enhanced attention mechanism and deep convolutional method with residual connectivity, each model branch more effectively harvests the features of the related format data.
Results: We validate the proposed model using the BCI Competition IV dataset 2a and dataset 2b. On dataset 2a, the average accuracy and kappa values are 87.49% and 0.83, respectively. The standard deviation of individual kappa values is only 0.08. For dataset 2b, the average classification accuracies obtained by feeding the data into the three branches of MBGA-Net are 85.71%, 85.83%, and 86.99%, respectively.
Conclusions: The experimental results demonstrate that MBGA-Net could effectively perform the classification task of motor imagery EEG signals, and it exhibits strong generalization performance. The proposed adaptive matching technique enhances the classification accuracy of each individual, which is beneficial for the practical application of EEG classification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2023.107641 | DOI Listing |
ATS Sch
December 2024
Department of Critical Care Medicine, Hospital for Sick Children, Toronto, Ontario, Canada; and.
Background: Physicians practicing in pediatric critical care medicine (PCCM) should maintain procedural skills competency. Faculty practicing in academic centers face challenges that may affect their procedural skills maintenance. The overall clinical opportunities are decreasing in PCCM.
View Article and Find Full Text PDFArch Rehabil Res Clin Transl
December 2024
Research Centre for Nutrition, Lifestyle and Exercise, School of Physiotherapy, Zuyd University of Applied Sciences, Faculty of Health, Heerlen, The Netherlands.
Objective: To provide a broad overview of the current state of research regarding the effects of 7 commonly used motor learning strategies to improve functional tasks within older neurologic and geriatric populations.
Data Sources: PubMed, CINAHL, and Embase were searched.
Study Selection: A systematic mapping review of randomized controlled trials was conducted regarding the effectiveness of 7 motor learning strategies-errorless learning, analogy learning, observational learning, trial-and-error learning, dual-task learning, discovery learning, and movement imagery-within the geriatric and neurologic population.
PLoS One
January 2025
School of Electronics Engineering (SENSE), Vellore Institute of Technology, Vellore, Tamil Nadu, India.
In recent years, the utilization of motor imagery (MI) signals derived from electroencephalography (EEG) has shown promising applications in controlling various devices such as wheelchairs, assistive technologies, and driverless vehicles. However, decoding EEG signals poses significant challenges due to their complexity, dynamic nature, and low signal-to-noise ratio (SNR). Traditional EEG pattern recognition algorithms typically involve two key steps: feature extraction and feature classification, both crucial for accurate operation.
View Article and Find Full Text PDFJ Neural Eng
January 2025
ECE & Neurology, University of Texas at Austin, 301 E. Dean Keeton St. C2100, Austin, Texas, 78712-1139, UNITED STATES.
Objective: A motor imagery (MI)-based brain-computer interface (BCI) enables users to engage with external environments by capturing and decoding electroencephalography (EEG) signals associated with the imagined movement of specific limbs. Despite significant advancements in BCI technologies over the past 40 years, a notable challenge remains: many users lack BCI proficiency, unable to produce sufficiently distinct and reliable MI brain patterns, hence leading to low classification rates in their BCIs. The objective of this study is to enhance the online performance of MI-BCIs in a personalized, biomarker-driven approach using transcranial alternating current stimulation (tACS).
View Article and Find Full Text PDFAnn Phys Rehabil Med
January 2025
Healthy Brain & Mind Research Centre (HBM), School of Behavioural and Health Sciences, Australian Catholic University, 115 Victoria Parade, Fitzroy, VIC, 3065 Australia.
Background: Inaccurate perception of one's physical abilities is potentially related to age-related declines in motor planning and can lead to changes in walking. Motor imagery training is effective at improving balance and walking in older adults, but most research has been conducted on older adults following surgery or in those with a history of falls. Deficits in motor imagery ability are associated with reduced executive function in older adults with cognitive impairment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!