Motivation: Computational promoter prediction (CPP) tools designed to classify prokaryotic promoter regions usually assume that a transcription start site (TSS) is located at a predefined position within each promoter region. Such CPP tools are sensitive to any positional shifting of the TSS in a windowed region, and they are unsuitable for determining the boundaries of prokaryotic promoters.
Results: TSSUNet-MB is a deep learning model developed to identify the TSSs of σ promoters. Mononucleotide and bendability were used to encode input sequences. TSSUNet-MB outperforms other CPP tools when assessed using the sequences obtained from the neighborhood of real promoters. TSSUNet-MB achieved a sensitivity of 0.839 and specificity of 0.768 on sliding sequences, while other CPP tool cannot maintain both sensitivities and specificities in a compatible range. Furthermore, TSSUNet-MB can precisely predict the TSS position of σ promoter-containing regions with a 10-base accuracy of 77.6%. By leveraging the sliding window scanning approach, we further computed the confidence score of each predicted TSS, which allows for more accurately identifying TSS locations. Our results suggest that TSSUNet-MB is a robust tool for finding σ promoters and identifying TSSs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiolchem.2023.107904 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!