We present the results of a search for heavy QCD axions performed by the ArgoNeuT experiment at Fermilab. We search for heavy axions produced in the NuMI neutrino beam target and absorber decaying into dimuon pairs, which can be identified using the unique capabilities of ArgoNeuT and the MINOS near detector. This decay channel is motivated by a broad class of heavy QCD axion models that address the strong CP and axion quality problems with axion masses above the dimuon threshold. We obtain new constraints at a 95% confidence level for heavy axions in the previously unexplored mass range of 0.2-0.9 GeV, for axion decay constants around tens of TeV.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.130.221802 | DOI Listing |
Phys Rev Lett
December 2024
Center for Gravitational Physics and Quantum Information, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan.
We calculate the two-loop heavy quarkonium Hamiltonian within potential-nonrelativistic-QCD effective field theory in the nonannihilation channel. This calculation represents the first nontrivial step toward determining the N^{4}LO Hamiltonian in the weak coupling regime. The large amount of computation is systematically handled by employing the β expansion, differential equations for master integrals, and adopting a single-step matching procedure, in contrast to the conventional two-step approach.
View Article and Find Full Text PDFHeliyon
February 2024
Optics-Laser Science and Technology Research Center, Malek Ashtar University of Technology, Isfahan, Iran.
In this article, Hard-Wall AdS/QCD with 5 flavors is used to study pseudoscalar, vector and axial-vector meson. The mass and decay constants of , , , , , , , , , and as well as strong couplings of , , , , , , , , , , , , and vertices are estimated in this study. A comparison of the results of the masses, decay constants, and strong couplings with existing predictions is also made.
View Article and Find Full Text PDFEur Phys J C Part Fields
November 2024
ETH Zürich, Institute for Particle Physics and Astrophysics, 8093 Zurich, Switzerland.
Phys Rev Lett
November 2024
Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201, USA.
Utilizing a comprehensive (3+1)D relativistic hydrodynamic framework with multiple conserved charge currents and charge-dependent lattice-QCD-based equation of state, we study the baryon and electric charge number deposition at midrapidity in isobar Ru+Ru and Zr+Zr collisions at the center of mass energy sqrt[s_{NN}]=200 GeV. Comparing our predictions with upcoming experimental data from the Relativistic Heavy Ion Collider will shed light on the existence of baryon junctions.
View Article and Find Full Text PDFEur Phys J C Part Fields
April 2024
INFN, Sezione di Padova, Padua, Italy.
This paper is a write-up of the ideas that were presented, developed and discussed at the fourth International Workshop on QCD Challenges from pp to AA, which took place in February 2023 in Padua, Italy. The goal of the workshop was to focus on some of the open questions in the field of high-energy heavy-ion physics and to stimulate the formulation of concrete suggestions for making progresses on both the experimental and theoretical sides. The paper gives a brief introduction to each topic and then summarizes the primary results.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!