Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Bifunctional catalysts can facilitate two different electrochemical reactions with conflicting characteristics. Here, a highly reversible bifunctional electrocatalyst for rechargeable zinc-air batteries (ZABs) is reported featuring a "core-shell structure" in which N-doped graphene sheets wrap around vanadium molybdenum oxynitride nanoparticles. Single Mo atoms are released from the particle core during synthesis and anchored to electronegative N-dopant species in the graphitic shell. The resultant Mo single-atom catalysts excel as active oxygen evolution reaction (OER) sites in pyrrolic-N and as active oxygen reduction reaction (ORR) sites in pyridinic-N environments. ZABs with such bifunctional and multicomponent single-atom catalysts deliver high power density (≈376.4 mW cm ) and long cycle life of over 630 h, outperforming noble-metal-based benchmarks. Flexible ZABs that can tolerate a wide range of temperatures (-20 to 80 °C) under severe mechanical deformation are also demonstrated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202302625 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!