Development of Specialized Microelectrode Arrays with Local Electroporation Functionality.

Ann Biomed Eng

Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Sommerfeldstr. 18-24, 52074, Aachen, Germany.

Published: January 2024

When a cell or tissue is exposed to a pulsed electric field (100-1000 V/cm), the cellular membrane permeabilizes for biomolecules that cannot pass an intact cellular membrane. During this electropermeabilization (EP), plasmid deoxyribonucleic acid sequences encoding therapeutic or regulatory genes can enter the cell, which is called gene electrotransfer (GET). GET using micro-/nano technology provides higher spatial resolution and operates with lower voltage amplitudes compared to conventional bulk EP. Microelectrode arrays (MEAs), which are usually used for the recording and stimulation of neuronal signals, can be utilized for GET as well. In this study, we developed a specialized MEA for local EP of adherent cells. Our manufacturing process provides a most flexible electrode and substrate material selection. We used electrochemical impedance spectroscopy to characterize the impedance of the MEAs and the impact of an adherent cellular layer. We verified the local EP functionality of the MEAs by loading a fluorophore dye into human embryonic kidney 293T cells. Finally, we demonstrated a GET with a subsequent green fluorescent protein expression by the cells. Our experiments prove that a high spatial resolution of GET can be obtained using MEAs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761456PMC
http://dx.doi.org/10.1007/s10439-023-03268-0DOI Listing

Publication Analysis

Top Keywords

microelectrode arrays
8
cellular membrane
8
spatial resolution
8
development specialized
4
specialized microelectrode
4
arrays local
4
local electroporation
4
electroporation functionality
4
functionality cell
4
cell tissue
4

Similar Publications

Proteases are overexpressed at various stages of conditions such as cancers and thus can serve as biomarkers for disease diagnosis. Electrochemical techniques to detect the activity of extracellular proteases have gained attraction due to their multiplexing capability. Here we employ an electrochemical approach based on a 3 × 3 gold (Au) microelectrode array (MEA) functionalized with (2-aminoethyl)ferrocene (AEF) tagged specific peptide substrates to monitor cathepsin B (CB) protease activity.

View Article and Find Full Text PDF

This article reports on the long-term use, solid bismuth microelectrode arrays for the first time. The presented working microelectrode is characterized by particular advantages compared to bismuth film electrodes and solid single bismuth microelectrodes; these advantages include environmentally friendly properties and the amplification of recorded currents, which are subsequently more resistant to interference. The proposed solid bismuth microelectrode array was applied to develop an adsorptive stripping voltammetric procedure for Sunset Yellow determination.

View Article and Find Full Text PDF

Time series segmentation for recognition of epileptiform patterns recorded via microelectrode arrays in vitro.

PLoS One

January 2025

Instituto de Microelectrónica de Sevilla (IMSE-CNM), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Sevilla, Sevilla, Spain.

Epilepsy is a prevalent neurological disorder that affects approximately 1% of the global population. Approximately 30-40% of patients respond poorly to antiepileptic medications, leading to a significant negative impact on their quality of life. Closed-loop deep brain stimulation (DBS) is a promising treatment for individuals who do not respond to medical therapy.

View Article and Find Full Text PDF

Neuronal Electrical Activity in Neuronal Networks Induced by a Focused Femtosecond Laser.

ACS Omega

January 2025

Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.

The spatial propagation of neuronal activity within neuronal circuits, which is associated with brain functions, such as memory and learning, is regulated by external stimuli. Conventional external stimuli, such as electrical inputs, pharmacological treatments, and optogenetic modifications, have been used to modify neuronal activity. However, these methods are tissue invasive, have insufficient spatial resolution, and cause irreversible gene modifications.

View Article and Find Full Text PDF

Intracellular electrophysiology is essential in neuroscience, cardiology, and pharmacology for studying cells' electrical properties. Traditional methods like patch-clamp are precise but low-throughput and invasive. Nanoelectrode Arrays (NEAs) offer a promising alternative by enabling simultaneous intracellular and extracellular action potential (iAP and eAP) recordings with high throughput.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!