Use of iRNA in the post-transcriptional gene silencing of necrosis-inducing Phytophthora protein 1(NPP1) in Phytophthora cinnamomi.

Mol Biol Rep

Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal.

Published: August 2023

Background: Phytophthora cinnamomi is an Oomycetes associated with soil, this Oomycete is one of the most destructive species of Phytophthora, being responsible for the decline of more than 5000 ornamental, forest, or fruit plants. It can secrete a class of protein NPP1 (Phytophthora necrosis inducing protein 1), responsible for inducing necrosis in leaves and roots of plants, leading to their death.

Objective: This work will report the characterization of the Phytophthora cinnamomi NPP1 gene responsible for the infection of Castanea sativa roots and will characterize the mechanisms of interaction between Phytophthora cinnamomi and Castanea sativa, by gene silencing NPP1 from Phytophthora cinnamomi mediated by RNAi.

Methods And Results: For silencing a part of the coding region of the NPP1 gene, was placed in the sense and antisense directions between an intron and ligated to the integrative vector pTH210. Cassette integration was confirmed by PCR and sequencing on the hygromycin-resistant Phytophthora cinnamomi transformants. Transformants obtained with the silenced gene was used to infect Castanea sativa.

Conclusions: Plants infected with these transformants showed a great reduction in disease symptoms, confirming iRNA as a potential alternative biological tool in the study of molecular factors, and in the control and management of Phytophthora cinnamomi.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10374718PMC
http://dx.doi.org/10.1007/s11033-023-08562-7DOI Listing

Publication Analysis

Top Keywords

phytophthora cinnamomi
28
phytophthora
10
gene silencing
8
npp1 phytophthora
8
npp1 gene
8
castanea sativa
8
cinnamomi
7
gene
5
irna post-transcriptional
4
post-transcriptional gene
4

Similar Publications

Plants possess remarkably durable resistance against non-adapted pathogens in nature. However, the molecular mechanisms underlying this resistance remain poorly understood, and it is unclear how the resistance is maintained without coevolution between hosts and the non-adapted pathogens. In this study, we used Phytophthora sojae (Ps), a non-adapted pathogen of N.

View Article and Find Full Text PDF

Antioomycete Nanoformulation for Biocontrol of English Walnut Crown and Root Rot Caused by .

Plants (Basel)

January 2025

Laboratorio de Fitopatología, Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Casilla 4-D, Quillota 2260000, Chile.

In Chile and worldwide, walnut () production faces significant losses due to crown and root rot caused by the phytopathogen . Currently, control methods have proven insufficient or unfavorable for the environment, increasing the need for sustainable alternatives. This research evaluates nanoemulsions based on extracts of medicinal plants endemic to Chile to control in walnut crops.

View Article and Find Full Text PDF

Globally, forests are constantly threatened by a plethora of disturbances of natural and anthropogenic origin, such as climate change, forest fires, urbanization, and pollution. Besides the most common stressors, during the last few years, Portuguese forests have been impacted by severe decline phenomena caused by invasive pathogens, many of which belong to the genus . The genus includes a large number of species that are invading forest ecosystems worldwide, chiefly as a consequence of global trade and human activities.

View Article and Find Full Text PDF

We examined the evolutionary history of Phytophthora infestans and its close relatives in the 1c clade. We used whole genome sequence data from 69 isolates of Phytophthora species in the 1c clade and conducted a range of genomic analyses including nucleotide diversity evaluation, maximum likelihood trees, network assessment, time to most recent common ancestor and migration analysis. We consistently identified distinct and later divergence of the two Mexican Phytophthora species, P.

View Article and Find Full Text PDF

Wheat Leaf Rust Effector Pt48115 Localized in the Chloroplasts and Suppressed Wheat Immunity.

J Fungi (Basel)

January 2025

College of Plant Protection, Hebei Agricultural University, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding 071000, China.

Wheat leaf rust caused by () is a prevalent disease worldwide, seriously threatening wheat production. acquires nutrients from host cells via haustoria and secretes effector proteins to modify and regulate the expression of host disease resistance genes, thereby facilitating pathogen growth and reproduction. The study of effector proteins is of great significance for clarifying the pathogenic mechanisms of and effective control of leaf rust.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!