Frustrated lanthanide oxides are promising candidates for cryogen-free magnetic refrigeration due to their suppressed ordering temperatures and high magnetic moments. While much attention has been paid to the garnet and pyrochlore lattices, the magnetocaloric effect in frustrated face-centered cubic () lattices remains relatively unexplored. We previously showed that the frustrated double perovskite BaGdSbO is a top-performing magnetocaloric material (per mol Gd) because of its small nearest-neighbor interaction between spins. Here we investigate different tuning parameters to maximize the magnetocaloric effect in the family of lanthanide oxides, ALnSbO (A = {Ba, Sr} and Ln = {Nd, Tb, Gd, Ho, Dy, Er}), including chemical pressure via the A site cation and the magnetic ground state via the lanthanide ion. Bulk magnetic measurements indicate a possible trend between magnetic short-range fluctuations and the field-temperature phase space of the magnetocaloric effect, determined by whether an ion is a Kramers or a non-Kramers ion. We report for the first time on the synthesis and magnetic characterization of the CaLnSbO series with tunable site disorder that can be used to control the deviations from Curie-Weiss behavior. Taken together, these results suggest lanthanide oxides as tunable systems for magnetocaloric design.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10324300 | PMC |
http://dx.doi.org/10.1021/acs.inorgchem.3c01137 | DOI Listing |
J Nanobiotechnology
January 2025
Department of Laboratory, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China.
Background: Cardiac fibrosis plays a critical role in the progression of various forms of heart disease, significantly increasing the risk of sudden cardiac death. However, currently, there are no therapeutic strategies available to prevent the onset of cardiac fibrosis.
Methods And Results: Here, biomimetic ATP-responsive nanozymes based on genetically engineered cell membranes are adapted to specifically recognize activated cardiac fibroblasts (CFs) for the treatment of cardiac fibrosis.
Int J Mol Sci
December 2024
Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea.
An excess of reactive oxygen species (ROS), leading to oxidative stress, is a major factor in aging. Antioxidant therapies are considered crucial for delaying aging. Nanoceria, a nanozyme with antioxidant activity, holds significant potential in protecting cells from oxidative stress-induced damage.
View Article and Find Full Text PDFMedicina (Kaunas)
December 2024
Department Cardiovascular Surgery, Gazi University Faculty of Medicine, Ankara 06560, Turkey.
Ischemia-reperfusion (I/R) injury is a process in which impaired perfusion is restored by restoring blood flow and tissue recirculation. Nanomedicine uses cutting-edge technologies that emerge from interdisciplinary influences. In the literature, there are very few in vivo and in vitro studies on how cerium oxide (CeO) affects systemic anti-inflammatory response and inflammation.
View Article and Find Full Text PDFSci Rep
January 2025
Center for Advanced Materials and Structures, School of Science and Technology, The University of Georgia, 0171, Tbilisi, Georgia.
In this work, cerium dioxide nanostructures were synthesized in an easy sonochemical way. CeO nanoparticles have received much attention in nanotechnology. CeONPs, exhibit biomimetic properties depending on their size, ratio of valency on their surface, and the ambient physico-chemical properties.
View Article and Find Full Text PDFChem Sci
January 2025
Radioisotope Science and Technology Division, Oak Ridge National Laboratory Oak Ridge TN 37830 USA
Lanthanides (Ln) are typically found in the +3 oxidation state. However, in recent decades, their chemistry has been expanded to include the less stable +2 oxidation state across the entire series except promethium (Pm), facilitated by the coordination of ligands such as trimethylsilylcyclopentadienyl, CHSiMe (Cp'). The complexes have been the workhorse for the synthesis and theoretical study of the fundamental aspects of divalent lanthanide chemistry, where experimental and computational evidence have suggested the existence of different ground state (GS) configurations, 4f or 4f 5d, depending on the specific metal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!