Thyroid hormone (TH) is indispensable for brain development in utero and during the first 2-3 years of life, and the negative effects of TH deficiency on brain development are irreversible. Detection of TH deficiency early in life by neonatal screening allows early treatment, thereby preventing brain damage. Inborn shortage of TH, also named congenital hypothyroidism (CH), can be the result of defective thyroid gland development or TH synthesis (primary or thyroidal CH (CH-T)). Primary CH is characterized by low blood TH and elevated thyroid-stimulating hormone (TSH) concentrations. Less frequently, CH is due to insufficient stimulation of the thyroid gland because of disturbed hypothalamic or pituitary function (central CH). Central CH is characterized by low TH concentrations, while TSH is normal, low or slightly elevated. Most newborn screening (NBS) programs for CH are primarily TSH based and thereby do not detect central CH. Only a few NBS programs worldwide aim to detect both forms of CH by different strategies. In the Netherlands, we have a unique T4-TSH-thyroxine-binding globulin (TBG) NBS algorithm for CH, which enables the detection of primary and central CH. Although the necessity of central CH detection by NBS is still under debate, it has been shown that most central CH patients have moderate-to-severe hypothyroidism instead of mild and that early detection of central CH by NBS probably improves its clinical outcome and clinical care for central CH patients with multiple pituitary hormone deficiency. We are therefore convinced that detection of central CH by NBS is of utmost importance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10388664 | PMC |
http://dx.doi.org/10.1530/ETJ-23-0041 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!