Downregulation of fascin induces collective cell migration in triple‑negative breast cancer.

Oncol Rep

Department of Diagnostic Pathology, Kochi University Hospital, Kochi University, Kohasu, Nankoku, Kochi 783‑8505, Japan.

Published: August 2023

Breast cancer (BC) is one of the most common types of cancer affecting female patients. Triple‑negative BC (TNBC) is an aggressive subtype. Fascin, an actin‑bundling protein, serves a significant role in cancer metastasis. Fascin overexpression is associated with poor prognosis of BC. To confirm the relationship between fascin expression and BC malignancy, the present study reviewed clinical data from 100 Japanese patients with BC and performed fresh immunohistochemical fascin examination of tissue samples. Statistical analyses showed metastasis or recurrence in 11 of 100 patients and a significant association between high fascin expression and poor prognosis. The TNBC subtype was also associated with high fascin expression. However, a few cases developed poor prognosis regardless of negative or slightly positive fascin expression. The present study established fascin knockdown (FKD) MDA‑MB‑231, a TNBC cell line, and investigated morphological effects of fascin on TNBC cells. FKD cells exhibited cell‑cell connections and bulbous nodules of various sizes on the cell surface. Conversely, non‑FKD MDA‑MB‑231 cells exhibited loose cell‑cell connections with numerous filopodia on the cell surface. Filopodia, actin‑rich plasma membrane protrusions, are composed of fascin and control cell‑cell interaction, migration and wound healing. Cancer metastasis is conventionally classified into two mechanisms: single and collective cell migration. Fascin increases cancer metastasis by single cell migration via filopodia on the cell surface. However, the present study suggested that following FKD, TNBC cells lost filopodia and exhibited collective cell migration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10308486PMC
http://dx.doi.org/10.3892/or.2023.8587DOI Listing

Publication Analysis

Top Keywords

cell migration
16
fascin expression
16
collective cell
12
cancer metastasis
12
poor prognosis
12
cell surface
12
fascin
11
cell
8
breast cancer
8
high fascin
8

Similar Publications

Background/purpose: The extract of the soft coral has shown an anti-cancer activity in various cancer cells. However, its effect on the oral squamous cell carcinoma cell (OSCC) lines remains unclear. The purpose of this study is to investigate the anti-cancer effects of the extract of (C127) on the OSCC cells.

View Article and Find Full Text PDF

Background/purpose: Revascularization procedures are used over apexification to treat teeth with necrotic pulp tissues and incomplete root formation. Clinically, inducing proliferation, migration, matrix deposition, and differentiation of stem cells from apical papilla (SCAPs) are critical for pulp regeneration. The study aimed to elucidate the impact of bone morphogenetic protein-4 (BMP-4) on plasminogen activation molecules and the osteogenic/odontogenic differentiation of SCAPs, as well as understand the related signaling mechanisms.

View Article and Find Full Text PDF

CIDEC/FSP27 exacerbates obesity-related abdominal aortic aneurysm by promoting perivascular adipose tissue inflammation.

Life Metab

February 2025

Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China.

Abdominal aortic aneurysm (AAA) is strongly correlated with obesity, partially due to the abnormal expansion of abdominal perivascular adipose tissue (PVAT). Cell death-inducing DNA fragmentation factor-like effector C (CIDEC), also known as fat-specific protein 27 (FSP27) in rodents, is specifically expressed in adipose tissue where it mediates lipid droplet fusion and adipose tissue expansion. Whether and how CIDEC/FSP27 plays a role in AAA pathology remains elusive.

View Article and Find Full Text PDF

Purpose: The aggressive nature of a tumor is presumably its inherent one, but different environmental cues can manipulate it in many ways. In this context, the influence of metabolic stresses on tumor behavior needs to be analyzed to understand their far-reaching implications on tumor aggression and dormancy. This work investigates different facets of the tumor, such as tumorigenic capacity, tumor phenotype, and migration, under multiple metabolic stress conditions.

View Article and Find Full Text PDF

Background: Unraveling the pathogenesis of colorectal cancer (CRC) can aid in developing prevention and treatment strategies. Aurora kinase A (AURKA) is a key participant in mitotic control and interacts with its co-activator, the targeting protein for Xklp2 (TPX2) microtubule nucleation factor. AURKA is associated with poor clinical outcomes and high risks of CRC recurrence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!