The use of CRISPR-Cas bacterial adaptive immunity system components for targeted DNA changes has opened broad prospects for programmable genome editing of higher organisms. The most widely used gene editors are based on the Cas9 effectors of the type II CRISPR-Cas systems. In complex with guide RNAs, Cas9 proteins are able to directionally introduce double-stranded breaks into DNA regions that are complementary to guide RNA sequences. Despite the wide range of characterized Cas9s, the search for new Cas9 variants remains an important task, since the available Cas9 editors have several limitations. This paper presents a workflow for the search for and subsequent characterization of new Cas9 nucleases developed in our laboratory. Detailed protocols describing the bioinformatical search, cloning, and isolation of recombinant Cas9 proteins, testing for the presence of nuclease activity in vitro, and determining the PAM sequence, which is required for recognition of DNA targets, are presented. Potential difficulties that may arise, as well as ways to overcome them, are considered.
Download full-text PDF |
Source |
---|
Colloids Surf B Biointerfaces
December 2024
School of Life Sciences, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, Hubei 430042, China. Electronic address:
The CRISPR/Cas9 gene-editing technology, derived from the adaptive immune mechanisms of bacteria, has demonstrated remarkable advantages in fields such as gene function research and the treatment of genetic diseases due to its simplicity in design, precise targeting, and ease of use. Despite challenges such as off-target effects and cytotoxicity, effective spatiotemporal control strategies have been achieved for the CRISPR/Cas9 system through precise regulation of Cas9 protein activity as well as engineering of guide RNAs (gRNAs). This review provides a comprehensive analysis of the core components and functional mechanisms underlying the CRISPR/Cas9 system, highlights recent advancements in spatiotemporal control strategies, and discusses future directions for development.
View Article and Find Full Text PDFCell Prolif
December 2024
Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
The recent advancements in cancer immunotherapy have spotlighted the potential of natural killer (NK) cells, particularly chimeric antigen receptor (CAR)-transduced NK cells. These cells, pivotal in innate immunity, offer a rapid and potent response against cancer cells and pathogens without the need for prior sensitization or recognition of peptide antigens. Although NK cell genetic modification is evolving, the viral transduction method continues to be inefficient and fraught with risks, often resulting in cytotoxic outcomes and the possibility of insertional mutagenesis.
View Article and Find Full Text PDFSci Rep
December 2024
INCI-UPR3212-CNRS, 8 Allée du Général Rouvillois, 67000, Strasbourg, France.
Mutations in the gene ABCA4 coding for photoreceptor-specific ATP-binding cassette subfamily A member 4, are responsible for Stargardts Disease type 1 (STGD1), the most common form of inherited macular degeneration. STGD1 typically declares early in life and leads to severe visual handicap. Abca4 gene-deletion mouse models of STGD1 accumulate lipofuscin, a hallmark of the disease, but unlike the human disease show no or only moderate structural changes and no functional decline.
View Article and Find Full Text PDFSci Rep
December 2024
Univ. Grenoble Alpes, CEA, Inserm, IRIG, UA13 BGE, Biomics, Grenoble, 38000, France.
Xeroderma pigmentosum group C (XPC) is a versatile protein crucial for sensing DNA damage in the global genome nucleotide excision repair (GG-NER) pathway. This pathway is vital for mammalian cells, acting as their essential approach for repairing DNA lesions stemming from interactions with environmental factors, such as exposure to ultraviolet (UV) radiation from the sun. Loss-of-function mutations in the XPC gene confer a photosensitive phenotype in XP-C patients, resulting in the accumulation of unrepaired UV-induced DNA damage.
View Article and Find Full Text PDFSci Rep
December 2024
Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
Gene targeting (GT) is a powerful tool for manipulating endogenous genomic sequences as intended. However, its efficiency is rather low, especially in seed plants. Numerous attempts have been made to improve the efficiency of GT via the CRISPR/Cas systems in plants, but these have not been sufficiently effective to be used routinely by everyone.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!