Hippocampal circuitry stimulation is sufficient to regulate adult hippocampal neurogenesis and ameliorate depressive-like behavior, but its underlying mechanism remains unclear. Here, it is shown that inhibition of medial septum (MS)-dentate gyrus (DG) circuit reverses the chronic social defeat stress (CSDS)-induced depression-like behavior. Further analysis exhibits that inhibition of gamma-aminobutyric acidergic neurons in MS projecting to the DG (MS -DG) increases the expression of platelet-derived growth factor-BB (PDGF-BB) in somatostatin (SOM) positive interneurons of DG, which contributes to the antidepressant-like effects. Overexpression of the PDGF-BB or exogenous administration of PDGF-BB in DG rescues the effect of chronic stress on the inhibition of neural stem cells (NSCs) proliferation and dendritic growth of adult-born hippocampal neurons, as well as on depressive-like behaviors. Conversely, knockdown of PDGF-BB facilitates CSDS-induced deficit of hippocampal neurogenesis and promotes the susceptibility to chronic stress in mice. Finally, conditional knockdown platelet-derived growth factor receptor beta (PDGFRβ) in NSCs blocks an increase in NSCs proliferation and the antidepressant effects of PDGF-BB. These results delineate a previously unidentified PDGF-BB/PDGFRβ signaling in regulating depressive-like behaviors and identify a novel mechanism by which the MS -DG pathway regulates the expression of PDGF-BB in SOM-positive interneurons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10401107PMC
http://dx.doi.org/10.1002/advs.202301110DOI Listing

Publication Analysis

Top Keywords

depressive-like behaviors
12
medial septum
8
hippocampal neurogenesis
8
platelet-derived growth
8
chronic stress
8
nscs proliferation
8
pdgf-bb
6
pdgf-bb-dependent neurogenesis
4
neurogenesis buffers
4
depressive-like
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!