A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Intra- and interspecific variation in spectral properties of dominant moss species in boreal peatlands. | LitMetric

Boreal peatlands store ~25 % of global soil organic carbon and host many endangered species; however, they face degradation due to climate change and anthropogenic drainage. In boreal peatlands, vegetation indicates ecohydrological conditions of the ecosystem. Applying remote sensing would enable spatially and temporally continuous monitoring of peatland vegetation. New multi- and hyperspectral satellite data offer promising approaches for understanding the spectral properties of peatland vegetation at high temporal and spectral resolutions. However, using spectral satellite data to their fullest potential requires detailed spectral analyses of dominant species in peatlands. A dominant feature of peatland vegetation is the genus mosses. We investigated how the reflectance spectra of common boreal mosses, collected from waterlogged natural conditions after snowmelt, change when the mosses are desiccated. We conducted a laboratory experiment where the reflectance spectra (350-2500 nm) and the mass of 90 moss samples (representing nine species) were measured repetitively. Furthermore, we examined (i) their inter- and intraspecific spectral differences and (ii) whether the species or their respective habitats could be identified based on their spectral signatures in varying states of drying. Our findings show that the most informative spectral regions to retrieve information about the species and their state of desiccation are in the shortwave infrared region. Furthermore, the visible and near-infrared spectral regions contain less information on species and moisture content. Our results also indicate that hyperspectral data can, to a limited extent, be used to separate mosses belonging to meso- and ombrotrophic habitats. Overall, this study demonstrates the importance of including data especially from the shortwave infrared region (1100-2500 nm) in remote sensing applications of boreal peatlands. The spectral library of mosses collected in this study is available as open data and can be used to develop new methods for remote monitoring of boreal peatlands.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10261972PMC
http://dx.doi.org/10.1002/ece3.10197DOI Listing

Publication Analysis

Top Keywords

boreal peatlands
20
peatland vegetation
12
spectral
10
spectral properties
8
remote sensing
8
satellite data
8
reflectance spectra
8
mosses collected
8
spectral regions
8
shortwave infrared
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!