Organic electrode materials (OEMs) emerge as one of the most promising candidates for the next-generation rechargeable batteries, mainly owing to their advantages of bountiful resources, high theoretical capacity, structural designability, and sustainability. However, OEMs usually suffer from poor electronic conductivity and unsatisfied stability in common organic electrolytes, ultimately leading to their deteriorating output capacity and inferior rate capability. Making clear of the issues from microscale to macroscale level is of great importance for the exploration of novel OEMs. Herein, the challenges and advanced strategies to boost the electrochemical performance of redox-active OEMs for sustainable secondary batteries are systematically summarized. Particularly, the characterization technologies and computational methods to elucidate the complex redox reaction mechanisms and confirm the organic radical intermediates of OEMs have been introduced. Moreover, the structural design of OEMs-based full cells and the outlook for OEMs are further presented. This review will shed light on the in-depth understanding and development of OEMs for sustainable secondary batteries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10190941 | PMC |
http://dx.doi.org/10.1002/EXP.20220066 | DOI Listing |
Pharmaceutics
December 2024
Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy.
Background/objectives: Nowadays, sustainability efforts focus on extracting natural cosmeceutical ingredients, such as polyphenols, from agri-food waste, for example, black bentonite (BB). The aims of this work were to validate an antioxidant cosmetic ingredient obtained from the waste BB and embed it into an ad hoc designed oromucosal spray intended for oral cavity wellness.
Methods: Focusing on sustainability, the study tested PEG200, propylene glycol, and their mixtures as unconventional and green extraction solvents, aligned with a waste-to-market approach.
Plants (Basel)
December 2024
School of Forestry, Northeast Forestry University, Harbin 150040, China.
A. Boriss., recognized for its significant medicinal potential, is increasingly threatened by overharvesting in wild habitats.
View Article and Find Full Text PDFNutrients
December 2024
Department of Nutrition, University of California, Davis, CA 95616, USA.
Background/objective: Zinc deficiency is common worldwide and has been linked to reduced growth and immune function, increased risk of and slower recovery from infections, and increased risk of non-communicable diseases. To address the issue, zinc biofortification of wheat has been proposed as a sustainable approach to increase dietary zinc intake in countries like Pakistan, where zinc deficiency rates are high and wheat is the primary staple crop. Since plasma zinc concentration (PZC) does not reliably respond to small changes in zinc intake, biomarkers sensitive to small changes in zinc intake achievable though biofortification are needed.
View Article and Find Full Text PDFMicroorganisms
December 2024
Laboratory of Analytic Biochemistry and Biotechnology (LABAB), Department of Biochemistry and Microbiology, Faculty of Biological and Agronomic Sciences, Mouloud Mammeri University, Tizi-Ouzou 15000, Algeria.
The exploration of new pharmacological compounds from endophytic fungi offers infinite possibilities. The aim of this study was to evaluate the antibacterial and antioxidant activities of extracts from the leaves of and five of its endophytic fungi and investigate the chemical diversity of the secondary metabolites produced. Isolated, purified, and molecularly identified endophytes and plant leaves were subjected to ethyl acetate extraction.
View Article and Find Full Text PDFMicroorganisms
December 2024
Department for Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, 00123 Rome, RM, Italy.
For the safe use of microbiome-based solutions in agriculture, the genome sequencing of strains composing the inoculum is mandatory to avoid the spread of virulence and multidrug resistance genes carried by them through horizontal gene transfer to other bacteria in the environment. Moreover, the annotated genomes can enable the design of specific primers to trace the inoculum into the soil and provide insights into the molecular and genetic mechanisms of plant growth promotion and biocontrol activity. In the present work, the genome sequences of some members of beneficial microbial consortia that have previously been tested in greenhouse and field trials as promising biofertilizers for maize, tomato and wheat crops have been determined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!