The quantum yield (QY) evaluation of upconverting nanoparticles (UCNPs) is an essential step in the characterisation of such materials. The QY of UCNPs is governed by competing mechanisms of populating and depopulating the electronic energy levels involved in the upconversion (UC), namely linear decay rates and energy transfer rates. As a consequence, at low excitation, the QY excitation power density () dependence obeys the power law , where represents the number of absorbed photons required for the emission of a single upconverted photon and determines the order of the energy transfer upconversion (ETU) process. At high power densities, the QY transits to a saturation level independent of the ETU process and the number of excitation photons, as a result of an anomalous power density dependence present in UCNPs. Despite the importance of this non-linear process for several applications (, living tissue imaging and super-resolution-microscopy), little has been reported in the literature regarding theoretical studies to describe the UC QY, especially for ETUs with order higher than two. Therefore, this work presents a simple general analytical model, which introduces the concept of the transition power density points and QY saturation to characterise the QY of an arbitrary ETU process. The transition power density points determine where the power density dependence of the QY and the UC luminescence changes. The results provided in this paper from fitting the model to experimental QY data of a Yb-Tm codoped β-UCNP for 804 nm and 474 nm emissions (ETU2 and ETU3 processes, respectively) exemplify the application of the model. The common transition points found for both processes were compared to each other showing strong agreement with theory, as well as, compared to previous reports when possible.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10263004 | PMC |
http://dx.doi.org/10.1039/d2na00850e | DOI Listing |
Sci Rep
December 2024
Department of Electrical Engineering, College of Engineering, King Saud University, Riyadh, 11421, Saudi Arabia.
The world is moving towards the utilization of hydrogen vehicle technology because its advantages are uniformity in power production, more efficiency, and high durability when compared to fossil fuels. So, in this work, the Proton Exchange Membrane Fuel Stack (PEMFS) device is selected for producing the energy for the hydrogen vehicle. The merits of this fuel technology are the possibility of operating less source temperature, and more suitability for stationery and transportation applications.
View Article and Find Full Text PDFSci Rep
December 2024
School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China.
A ridge-loaded staggered double-vane slow-wave structure is proposed for terahertz radiation sources employing a sheet electron beam. This slow-wave structure has the advantages of enhanced electric field and energy density distribution and improved interaction impedance in the beam-wave interaction region. High-frequency characteristics are investigated for the proposed slow wave structure and compared with those of the staggered double-vane slow wave structure.
View Article and Find Full Text PDFSchizophr Res
December 2024
Faculty of Health Sciences and Social Care, Molde University College, Molde, Norway; Department of Psychosis and Rehabilitation, Psychiatry Clinic, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway. Electronic address:
Unlabelled: Although exercise is medicine for outpatients with schizophrenia, it is unclear if one-year adherence-supported exercise leads to a "tipping point", at which the exercise becomes a routine manifested as life-long training in the patient group.
Methods: Forty-eight outpatients (28 men/20 women: 35 ± 11 (mean ± SD) years) with schizophrenia (ICD-10: F20-29) were randomised to: 1) collaborative care group (TG), performing aerobic interval (AIT; 4 × 4-min treadmill walking/running at ∼90 % peak heart rate) and leg press maximal strength training (MST; 4 × 4 repetitions at ∼90 % maximal strength [1RM]) 2d·wk. for 1-year, supported by transportation and training supervision; or 2) control group (CG).
Sci Rep
December 2024
Retina Ward, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran.
We compared chorioretinal microvascular of Slow Coronary Flow Phenomenon (SCFP) patients using Optical Coherence Tomography Angiography (OCTA) to healthy controls. We recruited 21 patients from September 2023 until January 2024 from two referral centers. We enrolled 21 age-sex-matched controls retrospectively.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Physics, University of Liverpool, Oxford Street, Liverpool, L69 7ZE, UK.
Topological semimetals have recently garnered widespread interest in the quantum materials research community due to their symmetry-protected surface states with dissipationless transport which have potential applications in next-generation low-power electronic devices. One such material, [Formula: see text], exhibits Dirac nodal arcs and although the topological properties of single crystals have been investigated, there have been no reports in crystalline thin film geometry. We examined the growth of [Formula: see text] heterostructures on a range of single crystals by optimizing the electron beam evaporation of Pt and Sn and studied the effect of vacuum thermal annealing on phase and crystallinity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!