Bacterial extracellular vesicles (EVs) are natural lipidic nanoparticles implicated in intercellular communication. Although EV research focused mainly on pathogens, the interest in probiotic-derived EVs is now rising. One example is , which produces EVs with anti-inflammatory effects on human epithelial cells. Our previous study with showed that EVs purified by size exclusion chromatography (SEC) displayed variations in protein content according to bacterial growth conditions. Considering these content variations, we hypothesized that a comparative proteomic analysis of EVs recovered in different conditions would elucidate whether a representative vesicular proteome existed, possibly providing a robust proteome dataset for further analysis. Therefore, was grown in two culture media, and EVs were purified by sucrose density gradient ultracentrifugation (UC). Microscopic and size characterization confirmed EV purification, while shotgun proteomics unveiled that they carried a diverse set of proteins. A comparative analysis of the protein content of UC- and SEC-derived EVs, isolated from cultures either in UF (cow milk ultrafiltrate medium) or YEL (laboratory yeast extract lactate medium), showed that EVs from all these conditions shared 308 proteins. This EV core proteome was notably enriched in proteins related to immunomodulation. Moreover, it showed distinctive features, including highly interacting proteins, compositional biases for some specific amino acids, and other biochemical parameters. Overall, this work broadens the toolset for the purification of -derived EVs, identifies a representative vesicular proteome, and enumerates conserved features in vesicular proteins. These results hold the potential for providing candidate biomarkers of purification quality, and insights into the mechanisms of EV biogenesis and cargo sorting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10265600PMC
http://dx.doi.org/10.1093/femsml/uqad029DOI Listing

Publication Analysis

Top Keywords

evs
9
culture media
8
core proteome
8
extracellular vesicles
8
evs purified
8
protein content
8
representative vesicular
8
vesicular proteome
8
proteome
5
proteins
5

Similar Publications

Intranasal delivery of extracellular vesicles: A promising new approach for treating neurological and respiratory disorders.

J Control Release

January 2025

Drug Delivery Laboratory, Departamento de Ciencias y Tecnología Farmacéuticas, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile; Center of New Drugs for Hypertension and Heart Failure (CENDHY), Santiago, Chile. Electronic address:

Background: Extracellular vesicles (EVs) are membrane vesicles secreted by all types of cells, including bacteria, animals, and plants. These vesicles contain proteins, nucleic acids, and lipids from their parent cells and can transfer these components between cells. EVs have attracted attention for their potential use in diagnosis and therapy due to their natural properties, such as low immunogenicity, high biocompatibility, and ability to cross the blood-brain barrier.

View Article and Find Full Text PDF

Klebsiella pneumoniae-derived extracellular vesicles impair endothelial function by inhibiting SIRT1.

Cell Commun Signal

January 2025

Beijing An Zhen Hospital, Capital Medical University, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China.

Background: The potential role of Klebsiella pneumoniae (K.pn) in hypertension development has been emphasized, although the specific mechanisms have not been well understood. Bacterial extracellular vesicles (BEVs) released by Gram-negative bacteria modulate host cell functions by delivering bacterial components to host cells.

View Article and Find Full Text PDF

CircRNAs in extracellular vesicles associated with triple-negative breast cancer.

Cell Mol Biol (Noisy-le-grand)

January 2025

Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh-11623, Saudi Arabia.

Article Synopsis
  • Triple-negative breast cancer (TNBC) is an aggressive form of cancer that often spreads to distant sites in the body, and understanding how it metastasizes is crucial for treatment.
  • Exosomes, which are small extracellular vesicles that carry RNA molecules, play a significant role in TNBC metastasis and present new opportunities for diagnosing and treating the disease via liquid biopsy.
  • Circular RNAs (circRNAs), a subtype of noncoding RNAs found in exosomes, can influence gene expression and are abundant in EVs; they may enhance communication between cancer cells, thereby influencing TNBC progression and offering potential biomarkers for prognosis and monitoring.
View Article and Find Full Text PDF

Identification of aberrant plasma vesicles containing AAK1 and CCDC18-AS1 in adolescents with major depressive disorder and preliminary exploration of treatment efficacy.

Genomics

January 2025

Department of Psychiatry, First Hospital /First Clinical Medical College of Shanxi Medical University, Taiyuan, China; Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.. Electronic address:

Background: Major depressive disorder (MDD) during adolescence significantly jeopardizes both mental and physical health. However, the etiology underlying MDD in adolescents remains unclear.

Methods: A total of 74 adolescents with MDD and 40 health controls (HCs) who underwent comprehensive clinical and cognitive assessments were enrolled.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) contain various glycans during their life cycle, from biogenesis to cellular recognition and uptake by recipient cells. EV glycosylation has substantial diagnostic significance in multiple health conditions, highlighting the necessity of determining an accurate glycosylation pattern for EVs from diverse biological fluids. Reliable and accessible glycan detection techniques help to elaborate the glycosylation-related functional alterations of specific proteins or lipids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!