Nanozymes are nanomaterials with similar catalytic activities to natural enzymes. Compared with natural enzymes, they have numerous advantages, including higher physiochemical stability, versatility, and suitability for mass production. In the past decade, the synthesis of nanozymes and their catalytic mechanisms have advanced beyond the simple replacement of natural enzymes, allowing for fascinating applications in various fields such as biosensing and disease treatment. In particular, the exploration of nanozymes as powerful toolkits in diagnostic viral testing and antiviral therapy has attracted growing attention. It can address the great challenges faced by current natural enzyme-based viral testing technologies, such as high cost and storage difficulties. Therefore, nanozyme can provide a novel nanozyme-based antiviral therapeutic regime with broader availability and generalizability that are keys to fighting a pandemic such as COVID-19. Herein, we provide a timely review of the state-of-the-art nanozymes regarding their catalytic activities, as well as a focused discussion on recent research into the use of nanozymes in viral testing and therapy. The remaining challenges and future perspectives will also be outlined. Ultimately, this review will inform readers of the current knowledge of nanozymes and inspire more innovative studies to push forward the frontier of this field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10191057 | PMC |
http://dx.doi.org/10.1002/EXP.20210086 | DOI Listing |
Eur J Immunol
December 2024
Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Tumor cell-intrinsic ubiquitin-conjugating enzyme Ubc13 promotes tumorigenesis, yet how Ubc13 in immune cell compartments regulates tumor progression remains elusive. Here, we show that myeloid-specific deletion of Ubc13 (Ubc13Lyz2) leads to accelerated transplanted lung tumor growth in mice. Compared with their littermate controls, tumor-bearing Ubc13Lyz2 mice had lower proliferation and effector function of CD8 T lymphocytes, accompanied by increased infiltration of myeloid-derived suppressor cells within the tumor microenvironment.
View Article and Find Full Text PDFInsect Sci
December 2024
Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, China.
Fungal pathogens produce secretory ribonuclease (RNase) T2 proteins during infection, which contribute to fungal virulence via their enzyme functions in degradation of host cell RNA. However, the details of those proteins entering the host cells are unclear. Our previous study demonstrated that the two secretory RNase T2 members, BbRNT2 and BbTrv, produced by the insect fungal pathogen Beauveria bassiana, caused cytotoxic damage to insect cells and contributed to fungal virulence.
View Article and Find Full Text PDFBiomol Ther (Seoul)
December 2024
Department of Biochemistry, College of Medicine, and Jeju Natural Medicine Research Center, Jeju National University, Jeju 63243, Republic of Korea.
γ-Radiation resistance is a major obstacle to the success of radiotherapy in colorectal cancer. Antioxidant-related factors contribute to resistance to radiation therapy and, therefore, are targets for improving the therapeutic response. In this study, we evaluated the molecular mechanisms underlying γ-radiation resistance using the colorectal cancer cell line SNUC5 and γ-radiation-resistant variant SNUC5/RR, including analyses of the role of nuclear factor erythroid 2-related factor 2 (NRF2), a transcription factor that regulates antioxidant enzymes, and related epigenetic regulators.
View Article and Find Full Text PDFFEBS J
December 2024
Department of Colorectal Surgery, New Taipei Municipal Tucheng Hospital, Taiwan.
Hypoxia is a critical microenvironmental factor that induces tumorigenesis and cancer progression, including metastasis. The highly dynamic nature of the extracellular matrix (ECM) plays a crucial role in metastasis. Collagens are the predominant component of structural proteins embedded within the ECM.
View Article and Find Full Text PDFCurr Pharm Des
December 2024
Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
Ursolic acid, a natural pentacyclic triterpenoid compound, has been shown to have significant cardioprotective effects in various preclinical studies. This article reviews the various mechanisms by which ursolic acid achieves its cardioprotective effects, highlighting its potent anti-oxidant, anti-inflammatory, and anti- apoptotic properties. Ursolic acid upregulates anti-oxidant enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GPx), effectively reducing oxidative stress, thereby decreasing reactive oxygen species (ROS) and improving lipid peroxidation levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!