Background: Prediabetes is a condition of intermediate hyperglycemia that may progress to type 2 diabetes. Vitamin D deficiency has been frequently linked to insulin resistance and diabetes. The study aimed to investigate the role of D supplementation and its possible mechanism of action on insulin resistance in prediabetic rats.
Method: The study was conducted on 24 male Wistar rats that were randomly divided into 6 rats as healthy controls and 18 prediabetic rats. Prediabetic rats were induced with a high-fat and high-glucose diet (HFD-G) combined with a low dose of streptozotocin. Rats with the prediabetic condition were then randomized into three groups of 12-week treatment: one group that received no treatment, one that received vitamin D3 at 100 IU/kg BW, and one group that received vitamin D3 at 1000 IU/kg BW. The high-fat and high-glucose diets were continuously given throughout the twelve weeks of treatment. At the end of the supplementation period, glucose control parameters, inflammatory markers, and the expressions of IRS1, PPARγ, NF-κB, and IRS1 were measured.
Results: Vitamin D3 dose-dependently improves glucose control parameters, as shown by the reduction of fasting blood glucose (FBG), oral glucose tolerance test (OGTT), glycated albumin, insulin levels, and markers of insulin resistance (HOMA-IR). Upon histological analysis, vitamin D supplementation resulted in a reduction of the islet of Langerhans degeneration. Vitamin D also enhanced the ratio of IL-6/IL-10, reduced IRS1 phosphorylation at Ser307, increased expression of PPAR gamma, and reduced phosphorylation of NF-KB p65 at Ser536.
Conclusion: Vitamin D supplementation reduces insulin resistance in prediabetic rats. The reduction might be due to the effects of vitamin D on IRS, PPARγ, and NF-κB expression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10266204 | PMC |
http://dx.doi.org/10.3389/fendo.2023.1089298 | DOI Listing |
Front Endocrinol (Lausanne)
January 2025
Department of Endocrinology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, China.
Objective: Recent studies have underscored the metabolic and cardiovascular regulatory capacity of perirenal adipose tissue (PAT), implicating its potential involvement in the pathogenesis of left ventricular hypertrophy (LVH). This investigation aims to assess the relationship between increased PAT mass and LVH, while also examining the potential mediating role of insulin resistance in this relationship among individuals with type 2 diabetes mellitus (T2DM).
Method: 1112 individuals with T2DM were prospectively recruited for this study.
Front Endocrinol (Lausanne)
January 2025
Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institute of Health, Bethesda, MD, United States.
Recombinant human IGF-1 is used to treat severe primary IGF-1 deficiency, but this treatment requires twice-daily injection, often does not fully correct the growth deficit, and has important off-target effects. We therefore sought to target IGF-1 to growth plate cartilage by generating fusion proteins combining IGF-1 with single-chain human antibody fragments that target matrilin-3, a cartilage matrix protein. We previously showed that this cartilage-targeting IGF-1 fusion protein (CV1574-1) promoted growth plate function in a GH-deficient (lit) mouse model.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Universidad de Buenos Aires, Buenos Aires, Argentina.
Introduction: Polycystic Ovary Syndrome (PCOS) affects 5-20% of reproductive-aged women. Insulin resistance (IR) is common in PCOS with consequent elevated risks of metabolic disorders and cardiovascular mortality. PCOS and obesity are complex conditions associated with Metabolic Syndrome (MS), contributing to cardiovascular disease and type 2 diabetes mellitus (T2D).
View Article and Find Full Text PDFIran J Basic Med Sci
January 2025
Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
Metabolic syndrome is a clustering of metabolic abnormalities and anthropometric factors that increase the risk of cardiovascular disease and type 2 diabetes mellitus. As the search for effective treatments intensifies, attention has turned towards natural substances with potential medicinal benefits. Among them, vanillic acid, a phenolic acid present in many plants, has attracted some attention due to its wide range of biological activities.
View Article and Find Full Text PDFFood Res Int
February 2025
Department of Nutrition and Food Hygiene, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1026. Shatai South Road, Guangzhou 510515, Guangdong, PR China; Department of Clinical Nutrition, Nanfang Hospital, Southern Medical University, 1838. Guangzhou Avenue North, Guangzhou 510515, Guangdong, PR China. Electronic address:
Xylooligosaccharides (XOS) ameliorate insulin resistance (IR) in gestational diabetes mellitus (GDM) probably by propagating Akkermansia muciniphila (Akk). This study aimed to investigate the effects and mechanisms of XOS, Akk and combination on IR in GDM mice/pseudo-germ-free (PGF) mice. Female mice were fed with AIN-93 (n = 19) and high fat diet (HFD) (n = 206).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!