A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identification of a polycomb group-related gene signature for predicting prognosis and immunotherapy efficacy in lung adenocarcinoma. | LitMetric

Background: Several studies have reported the role of polycomb group (PcG) genes in human cancers; however, their role in lung adenocarcinoma (LUAD) is unknown.

Methods: Firstly, consensus clustering analysis was used to identify PcG patterns among the 633 LUAD samples in the training dataset. The PcG patterns were then compared in terms of the overall survival (OS), signaling pathway activation, and immune cell infiltration. The PcG-related gene score (PcGScore) was developed using Univariate Cox regression and the least absolute shrinkage and selection operator (LASSO) algorithm to estimate the prognostic value and treatment sensitivity of LUAD. Finally, the prognostic ability of the model was validated using a validation dataset.

Results: Two PcG patterns were obtained by consensus clustering analysis, and the two patterns showed significant differences in prognosis, immune cell infiltration, and signaling pathways. Both the univariate and multivariate Cox regression analyses confirmed that the PcGScore was a reliable and independent predictor of LUAD (P<0.001). The high- and low-PCGScore groups showed significant differences in the prognosis, clinical outcomes, genetic variation, immune cell infiltration, and immunotherapeutic and chemotherapeutic effects. Lastly, the PcGScore demonstrated exceptional accuracy in predicting the OS of the LUAD patients in a validation dataset (P<0.001).

Conclusions: The study indicated that the PcGScore could serve as a novel biomarker to predict prognosis, clinical outcomes, and treatment sensitivity for LUAD patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10267909PMC
http://dx.doi.org/10.21037/jtd-22-1324DOI Listing

Publication Analysis

Top Keywords

pcg patterns
12
lung adenocarcinoma
8
consensus clustering
8
clustering analysis
8
immune cell
8
cell infiltration
8
cox regression
8
identification polycomb
4
polycomb group-related
4
group-related gene
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!