Introduction: Recent studies have revealed the possibility of learning skills through alternative methods and repetitive tactile stimulation without explicit training. This study aimed to examine the effect of involuntary tactile stimulation on the memory and creativity of healthy participants.
Methods: A group of 92 right-handed students participated in this study voluntarily. They were assigned to the experimental (n=45) and control (n=47) groups. The participants performed two creativity tests (divergent and convergent thinking) and a verbal memory task as the pretest. Then, the experimental group received 30-min involuntary tactile stimulation on the right index finger, and the control group did not. In the posttest, both groups were asked to perform the creativity and verbal memory tasks again.
Results: The learning score and speed of the Rey auditory-verbal learning test in the stimulation group significantly increased (P=0.02). Moreover, in the creativity-related tests, there was a significant effect of the intervention on convergent thinking, i.e., the remote association task (P=0.03), but not for the divergent thinking, i.e., the alternative uses test (P>0.05).
Conclusion: Using involuntary tactile stimulation on the index finger of the right hand of individuals could enhance their performance in verbal memory and creativity-convergent thinking.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10262283 | PMC |
http://dx.doi.org/10.32598/bcn.2022.147.4 | DOI Listing |
ACS Nano
January 2025
School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
Natural skin receptors use ions as signal carriers, while most of the developed artificial tactile sensors utilize electrons as information carriers. To imitate the biological ionic sensing behavior, here, we present a kind of biomimetic, ionic, and fully passive mechanotransduction mechanism leveraging mechanical modulation of interfacial ionic p-n junction (IPNJ) through microchannels. Sensors based on this mechanism do not rely on an external power supply and can encode external tactile stimuli into highly analogous signal outputs to those of natural skin receptors, in terms of both signal type (i.
View Article and Find Full Text PDFJ Neurophysiol
January 2025
Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, Korea.
Previous studies have shown that high-gamma (HG) activity in the primary visual cortex (V1) has distinct higher (broadband) and lower (narrowband) components with different functions and origins. However, it is unclear whether a similar segregation exists in the primary somatosensory cortex (S1), and the origins and roles of HG activity in S1 remain unknown. Here, we investigate the functional roles and origins of HG activity in S1 during tactile stimulation in humans and a rat model.
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Laboratory for the Study of Tactile Communication, Pushkin State Russian Language Institute, 117485 Moscow, Russia.
Background: The significance of tactile stimulation in human social development and personal interaction is well documented; however, the underlying cerebral processes remain under-researched. This study employed functional magnetic resonance imaging (fMRI) to investigate the neural correlates of social touch processing, with a particular focus on the functional connectivity associated with the aftereffects of touch.
Methods: A total of 27 experimental subjects were recruited for the study, all of whom underwent a 5-minute calf and foot massage prior to undergoing resting-state fMRI.
J Clin Med
January 2025
Department of Trauma Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
: Tactile gnosis derives from the interplay between the hand's tactile input and the memory systems of the brain. It is the prerequisite for complex hand functions. Impaired sensation leads to profound disability.
View Article and Find Full Text PDFClin Oral Investig
January 2025
Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 239/245, São Paulo, SP, CEP 01504-000, Brazil.
Objectives: To investigate if photobiomodulation (PBM) can reduce dentin hypersensitivity (DH) through a randomized, controlled, double-blind clinical trial.
Materials And Methods: One hundred and twelve patients experiencing DH after non-surgical scaling and root planing (SRP) were enrolled and divided into the Experimental Group - SRP + PBM (660 nm, 1.061 J/cm²) and the Control Group - SRP + PBM simulation.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!