Extremely halophilic archaea are one of the principal microbial community components in hypersaline environments. The majority of cultivated haloarchaea are aerobic heterotrophs using peptides or simple sugars as carbon and energy sources. At the same time, a number of novel metabolic capacities of these extremophiles were discovered recently among which is a capability of growing on insoluble polysaccharides such as cellulose and chitin. Still, polysaccharidolytic strains are in minority among cultivated haloarchaea and their capacities of hydrolyzing recalcitrant polysaccharides are hardly investigated. This includes the mechanisms and enzymes involved in cellulose degradation, which are well studied for bacterial species, while almost unexplored in archaea and haloarchaea in particular. To fill this gap, a comparative genomic analysis of 155 cultivated representatives of halo(natrono)archaea, including seven cellulotrophic strains belonging to the genera , , , and was performed. The analysis revealed a number of cellulases, encoded in the genomes of cellulotrophic strains but also in several haloarchaea, for which the capacity to grow on cellulose was not shown. Surprisingly, the cellulases genes, especially of GH5, GH9 and GH12 families, were significantly overrepresented in the cellulotrophic haloarchaea genomes in comparison with other cellulotrophic archaea and even cellulotrophic bacteria. Besides cellulases, the genes for GH10 and GH51 families were also abundant in the genomes of cellulotrophic haloarchaea. These results allowed to propose the genomic patterns, determining the capability of haloarchaea to grow on cellulose. The patterns helped to predict cellulotrophic capacity for several halo(natrono)archaea, and for three of them it was experimentally confirmed. Further genomic search revealed that glucose and cellooligosaccharides import occurred by means of porters and ABC (ATP-binding cassette) transporters. Intracellular glucose oxidation occurred through glycolysis or the semi-phosphorylative Entner-Dudoroff pathway which occurrence was strain-specific. Comparative analysis of CAZymes toolbox and available cultivation-based information allowed proposing two possible strategies used by haloarchaea capable of growing on cellulose: so-called specialists are more effective in degradation of cellulose while generalists are more flexible in nutrient spectra. Besides CAZymes profiles the groups differed in genome sizes, as well as in variability of mechanisms of import and central metabolism of sugars.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10267330PMC
http://dx.doi.org/10.3389/fmicb.2023.1112247DOI Listing

Publication Analysis

Top Keywords

haloarchaea
8
cultivated haloarchaea
8
cellulotrophic strains
8
genomes cellulotrophic
8
grow cellulose
8
cellulases genes
8
cellulotrophic haloarchaea
8
cellulose
7
cellulotrophic
7
cellulose metabolism
4

Similar Publications

Genetic identification of acetyl-CoA synthetases involved in acetate activation in .

Appl Environ Microbiol

December 2024

State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, Beijing, China.

Unlabelled: Acetate/acetyl-CoA interconversion is an interesting metabolic node, primarily catalyzed by a set of various enzymes in prokaryotes. is a promising haloarchaeaon, capable of utilizing acetate as a sole carbon source for biosynthesis of high value-added products. Here, we have reported the key enzymes that catalyzed acetate activation in .

View Article and Find Full Text PDF

Haloarchaea represents a unique group of microorganisms that have adapted to thrive in high-salt environments. These microbes produce distinctive biomolecules, some of which exhibit extraordinary properties. One such biomolecule is bacterioruberin, a prominent red-pigmented C carotenoid commonly found in halophilic archaea, renowned for its antioxidant properties and potential as a functional resource.

View Article and Find Full Text PDF

Constructing High-Yielding for (-)-α-Bisabolol Production Based on the Exogenous Haloarchaeal MVA Pathway and Endogenous Molecular Chaperones.

J Agric Food Chem

January 2025

The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.

(-)-α-Bisabolol exhibits analgesic, anti-inflammatory, and skin-soothing properties and is widely applied in the cosmetic and pharmaceutical industries. The use of plant essential oil distillation or chemical synthesis to produce (-)-α-bisabolol is both inefficient and unsustainable. Currently, the microbial production of (-)-α-bisabolol mainly relies on and as chassis strains; however, high concentrations of (-)-α-bisabolol have certain toxicity to the strain.

View Article and Find Full Text PDF

Microbial Bacterioruberin: A Comprehensive Review.

Indian J Microbiol

December 2024

Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India.

Bacterioruberin (BR) is a fat-soluble, dipolar, reddish pigment predominantly found in halophilic archaea. BR is a rare C50 carotenoid from the xanthophyll family, and it has been extensively studied for its potent antioxidant properties, such as its ability to protect cells from oxidative stress. In addition, several studies have shown that BR-rich extracts and its derivatives exhibit significant antiviral, antidiabetic, antibacterial, and anti-inflammatory effects, making them ideal candidates for the development of novel therapeutic interventions against various diseases.

View Article and Find Full Text PDF

Metataxonomic analysis of halophilic archaea community in two geothermal oases in the southern Tunisian Sahara.

FEMS Microbiol Lett

January 2025

Faculté des Sciences de Tunis, LR03ES03 Laboratoire de Microbiologie et Biomolécules Actives, Université Tunis El Manar, 2092 Tunis, Tunisia.

Article Synopsis
  • The study examines the variety of halophilic archaea in the geothermal waters of southern Tunisia, important for irrigation in arid regions.
  • Three types of samples—water, sediment, and halite-soil crust—were collected from two geothermal springs and analyzed using advanced DNA sequencing techniques.
  • Results indicated a shared presence of 20 out of 33 genera between the sources, with unique genera identified, suggesting these organisms can thrive in fluctuating conditions away from geothermal sites.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!