A combination of photochemistry and proton coupled electron transfer (PCET) is a primary strategy employed by biochemical systems and synthetic chemistry to enable uphill reactions under mild conditions. Degenerate nanometer-sized n-type semiconductor nanoparticles (SCNPs) with the Fermi level above the bottom of the conduction band are strongly reducing and act more like metals than semiconductors. Application of the degenerate SCNPs is limited to few examples. Herein, we load microporous potassium poly(heptazine imide) (K-PHI) nanoparticles with electrons (e) and charge balancing protons (H) in an illumination phase using sacrificial agents. e/H in the K-PHI nanoparticles are weakly bound and therefore could be used in a range of PCET reactions in dark, such as generation of aryl radicals from aryl halides, ketyl radicals from ketones, and 6e/6H reduction of nitrobenzene to aniline. The integration of several features that until now were intrinsic for plants and natural photosynthesis into a transition metal free nanomaterial composed of abundant elements (C, N, and K) offers a powerful tool for synthetic organic chemistry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10190955 | PMC |
http://dx.doi.org/10.1002/EXP.20210063 | DOI Listing |
ACS Catal
October 2024
Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Kowloon 999077, Hong Kong.
In this work, protonated poly(heptazine imide) (H-PHI) was obtained by adding acid to the suspension of potassium PHI (K-PHI) in ethanol. It was established that the obtained H-PHI demonstrates very high photocatalytic activity in the reaction of hydrogen formation from ethanol in the presence of Pt nanoparticles under visible light irradiation in comparison with K-PHI. This enhancement can be attributed to improved efficiency of photogenerated charge transfer to the photocatalyst's surface, where redox processes occur.
View Article and Find Full Text PDFMater Horiz
July 2022
Department Nanochemistry, Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany.
Photomemristive sensors have the potential to innovate current photo-electrochemical sensors by incorporating new sensing capabilities including non-invasive, wireless and time-delayed (memory) readout. Here we report the charge storing 2D carbon nitride potassium poly(heptazine imide), K-PHI, as a direct photomemristive sensing platform by capitalizing on K-PHI's visible light bandgap, large oxidation potential, and intrinsic optoionic charge storage properties. Utilizing the light-induced charge storage function of K-PHI nanosheets, we demonstrate memory sensing charge accumulation and present potentiometric, impedimetric and coulometric readouts to write/erase this information from the material, with no additional reagents required.
View Article and Find Full Text PDFExploration (Beijing)
December 2021
Max-Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry Research Campus Golm Potsdam Germany.
A combination of photochemistry and proton coupled electron transfer (PCET) is a primary strategy employed by biochemical systems and synthetic chemistry to enable uphill reactions under mild conditions. Degenerate nanometer-sized n-type semiconductor nanoparticles (SCNPs) with the Fermi level above the bottom of the conduction band are strongly reducing and act more like metals than semiconductors. Application of the degenerate SCNPs is limited to few examples.
View Article and Find Full Text PDFLangmuir
August 2004
Laboratoire de Chimie Physique Macromoléculaire, UMR CNRS-INPL 7568, Groupe ENSIC, BP 451, 54001 Nancy Cedex, France.
Polymeric surfactants obtained by hydrophobic modification of dextran are used as stabilizers for oil-in-water emulsions. The kinetics of interfacial tension decrease is studied as a function of polymer structural characteristics (degree of hydrophobic substitution) and at various polymer concentrations. Several hydrocarbon oils, either aliphatic (octane, decane, dodecane, and hexadecane) or aromatic (styrene), are tested.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!