Hydrogel microspheres are a novel functional material, arousing much attention in various fields. Microfluidics, a technology that controls and manipulates fluids at the micron scale, has emerged as a promising method for fabricating hydrogel microspheres due to its ability to generate uniform microspheres with controlled geometry. With the development of microfluidic devices, more complicated hydrogel microspheres with multiple structures can be constructed. This review presents an overview of advances in microfluidics for designing and engineering hydrogel microspheres. It starts with an introduction to the features of hydrogel microspheres and microfluidic techniques, followed by a discussion of material selection for fabricating microfluidic devices. Then the progress of microfluidic devices for single-component and composite hydrogel microspheres is described, and the method for optimizing microfluidic devices is also given. Finally, this review discusses the key research directions and applications of microfluidics for hydrogel microsphere in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10191056 | PMC |
http://dx.doi.org/10.1002/EXP.20210036 | DOI Listing |
Int J Biol Macromol
January 2025
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266100, China; Key Laboratory of Ocean Observation and Information of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China. Electronic address:
Improving the adsorption capacity of materials for pollutants by means of modification is an important direction in the research of water treatment technology. To improve the applicability of sodium alginate composites in the field of adsorption, magnetic sodium alginate-based hydrogel microsphere adsorbent material FeO@SA/PEI-Fe (FSPF) was synthesized in a single step by using polyethyleneimine grafting modification of sodium alginate by sol-gel method. The material was used for the removal of direct blue GL (DB 200) and direct date red B (DR 13) from simulated wastewater, as well as Cu(II) and Pb(II) from simulated wastewater with heavy metal ions.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China.
High transductive loss at tissue injury sites impedes repair. The high dissipation characteristics in the electromechanical conversion of piezoelectric biomaterials pose a challenge. Therefore, supramolecular engineering and microfluidic technology is utilized to introduce slide-ring polyrotaxane and conductive polypyrrole to construct stress-electric coupling hydrogel microspheres.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China.
J Biomed Mater Res A
January 2025
Department of Pharmacy, Yueqing Third People's Hospital, Wenzhou, China.
Basic fibroblast growth factor (bFGF) is a significant member of the fibroblast growth factor (FGF) family. The bFGF has a three-dimensional structure comprising 12 reverse parallel β-folds. This structure facilitates tissue wound repair, angiogenesis, bone formation, cartilage repair, and nerve regeneration.
View Article and Find Full Text PDFBiomater Transl
September 2024
Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!