Graphite has been used in a wide range of applications since the discovery due to its great chemical stability, excellent electrical conductivity, availability, and ease of processing. However, the synthesis of graphite materials still remains energy-intensive as they are usually produced through a high-temperature treatment (>3000°C). Herein, we introduce a molten salt electrochemical approach utilizing carbon dioxide (CO) or amorphous carbons as raw precursors for graphite synthesis. With the assistance of molten salts, the processes can be conducted at moderate temperatures (700-850°C). The mechanisms of the electrochemical conversion of CO and amorphous carbons into graphitic materials are presented. Furthermore, the factors that affect the graphitization degree of the prepared graphitic products, such as molten salt composition, working temperature, cell voltage, additives, and electrodes, are discussed. The energy storage applications of these graphitic carbons in batteries and supercapacitors are also summarized. Moreover, the energy consumption and cost estimation of the processes are reviewed, which provides perspectives on the large-scale synthesis of graphitic carbons using this molten salt electrochemical strategy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10191008PMC
http://dx.doi.org/10.1002/EXP.20210186DOI Listing

Publication Analysis

Top Keywords

molten salt
16
graphitic carbons
12
salt electrochemical
8
amorphous carbons
8
molten
5
graphitic
5
carbons
5
salt electro-preparation
4
electro-preparation graphitic
4
carbons graphite
4

Similar Publications

The successful design and deployment of next-generation nuclear technologies heavily rely on thermodynamic data for relevant molten salt systems. However, the lack of accurate force fields and efficient methods has limited the quality of thermodynamic predictions from atomistic simulations. Here we propose an efficient free energy framework for computing chemical potentials, which is the central free energy quantity behind many thermodynamic properties.

View Article and Find Full Text PDF

Polyethylene oxide (PEO)-based electrolytes are essential to advance all-solid-state lithium batteries (ASSLBs) with high safety/energy density due to their inherent flexibility and scalability. However, the inefficient Li+ transport in PEO often leads to poor rate performance and diminished stability of the ASSLBs. The regulation of intermolecular H-bonds is regarded as one of the most effective approaches to enable efficient Li+ transport, while the practical performances are hindered by the electrochemical instability of free H-bond donors and the constrained mobility of highly ordered H-bonding structures.

View Article and Find Full Text PDF

Designing efficient Ruthenium-based catalysts as practical anodes is of critical importance in proton exchange membrane water electrolysis. Here, we develop a self-assembly technique to synthesize 1 nm-thick rutile-structured high-entropy oxides (RuIrFeCoCrO) from naked metal ions assembly and oxidation at air-molten salt interface. The RuIrFeCoCrO requires an overpotential of 185 mV at 10 m A cm and maintains the high activity for over 1000 h in an acidic electrolyte via the adsorption evolution mechanism.

View Article and Find Full Text PDF

Recycling waste salt in the dry reprocessing of nuclear fuel and reducing electric energy consumption in the electrorefining process are crucial steps toward addressing significant challenges in this field. The present study proposes a novel approach to purify waste salt by selectively adsorbing excessive fission products using 5A molecular sieves (5A), based on the principles of electrorefining, with the ultimate aim of achieving sustainable development in nuclear fuel. First, Lutetium (Lu)-Bi alloy was synthesized through constant potential electrolysis in the LiCl-KCl-LuCl melt, resulting in a 90.

View Article and Find Full Text PDF

Dissolution Mechanism of YbOF in (LiF-CaF) Molten Salt.

Molecules

January 2025

School of Metallurgical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.

The dissolution mechanism of YbOF in a fluoride-containing (LiF-CaF) molten salt is the basis for analyzing the structure of the resulting medium and optimizing the electrolytic preparation of rare-earth Yb alloys. In this study, isothermal saturation was used to analyze solubility changes of YbOF in the (LiF-CaF). system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!