Two-dimensional (2D) heterostructures have attracted a lot of attention due to their novel properties induced by the synergistic effects of the constituent building blocks. In this work, new lateral heterostructures (LHSs) formed by stitching germanene and AsSb monolayers are investigated. First-principles calculations assert the semimetal and semiconductor characters of 2D germanene and AsSb, respectively. The non-magnetic nature is preserved by forming LHSs along the armchair direction, where the band gap of the germanene monolayer can be increased to 0.87 eV. Meanwhile, magnetism may emerge in the zigzag-interline LHSs depending on the chemical composition. Such that, total magnetic moments up to 0.49 can be obtained, being produced mainly at the interfaces. The calculated band structures show either topological gap or gapless protected interface states, with quantum spin-valley Hall effects and Weyl semimetal characters. The results introduce new lateral heterostructures with novel electronic and magnetic properties, which can be controlled by the interline formation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10263102 | PMC |
http://dx.doi.org/10.1039/d3ra01867a | DOI Listing |
ACS Nano
January 2025
School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia.
Fullerenes, with well-defined molecular structures and high scalability, hold promise as fundamental building blocks for creating a variety of carbon materials. The fabrication and transfer of large-area films with precisely controlled thicknesses and morphologies on desired surfaces are crucial for designing and developing fullerene-based materials and devices. In this work, we present strategies for solid-state transferring C molecular nanometer-thin films, with dimensions of centimeters in lateral size and thicknesses controlled in the range of 1-20 nm, onto various substrates.
View Article and Find Full Text PDFNanophotonics
April 2024
School of Electronic and Information Engineering, and School of Cyber Science and Technology, Beihang University, Beijing, China.
Understanding the ultrafast excitation, detection, transportation, and manipulation of nanoscale spin dynamics in the terahertz (THz) frequency range is critical to developing spintronic THz optoelectronic nanodevices. However, the diffraction limitation of the sub-millimeter waves - THz wavelengths - has impaired experimental investigation of spintronic THz nano-emission. Here, we present an approach to studying laser THz emission nanoscopy from W|CoFeB|Pt metasurfaces with ∼60-nm lateral spatial resolution.
View Article and Find Full Text PDFSmall
December 2024
School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
Introducing uniform magnetic order in two-dimensional (2D) topological insulators by constructing heterostructures of TI and magnet is a promising way to realize the high-temperature Quantum Anomalous Hall effect. However, the topological properties of 2D materials are susceptible to several factors that make them difficult to maintain, and whether topological interface states (TISs) can exist at magnetic-topological heterostructure interfaces is largely unknown. Here, it is experimentally shown that TISs in a lateral heterostructure of CrTe/Bi(110) are robust against disorder, defects, high magnetic fields (time-reversal symmetry-breaking perturbations), and elevated temperature (77 K).
View Article and Find Full Text PDFNanophotonics
March 2024
Department of Physics, Hanyang University, Seoul 04763, Korea.
Transition metal dichalcogenide (TMDs) heterostructure, particularly the lateral heterostructure of two different TMDs, is gaining attention as ultrathin photonic devices based on the charge transfer (CT) excitons generated at the junction. However, the characteristics of the interface of the lateral heterostructure, determining the electronic band structure and alignment at the heterojunction region, have rarely been studied due to the limited spatial resolution of nondestructive analysis systems. In this study, we investigated the confined phonons resulting from the phonon-disorder scattering process involving multiple disorders at the lateral heterostructure interface of MoS-WS to prove the consequences of disorder-mediated deformation in the band structure.
View Article and Find Full Text PDFNanoscale
December 2024
Department of Physics, OSED, Key Laboratory of Low Dimensional Condensed Matter Physics (Department of Education of Fujian Province), Xiamen University, Xiamen 361005, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!