WEE1 is a checkpoint kinase critical for mitotic events, especially in cell maturation and DNA repair. Most cancer cells' progression and survival are linked with elevated levels of WEE1 kinase. Thus, WEE1 kinase has become a new promising druggable target. A few classes of WEE1 inhibitors are designed by rationale or structure-based techniques and optimization approaches to identify selective acting anticancer agents. The discovery of the WEE1 inhibitor AZD1775 further emphasized WEE1 as a promising anticancer target. Therefore, the current review provides a comprehensive data on medicinal chemistry, synthetic approaches, optimization methods, and the interaction profile of WEE1 kinase inhibitors. In addition, WEE1 PROTAC degraders and their synthetic procedures, including a list of noncoding RNAs necessary for regulation of WEE1, are also highlighted. From the standpoint of medicinal chemistry, the contents of this compilation serve as an exemplar for the further design, synthesis, and optimization of promising WEE1-targeted anticancer agents.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10268025 | PMC |
http://dx.doi.org/10.1021/acsomega.3c01558 | DOI Listing |
Plant Physiol Biochem
December 2024
School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, West Java, Indonesia. Electronic address:
Conspecific plant growth is inhibited by extracellular fragments in a concentration-dependent manner. Although several reports have addressed this self-DNA inhibition, the underlying mechanism remains unclear. In this investigation, we evaluated the progression of cell cycle of rice roots in responding to extracellular-self DNA (esDNA).
View Article and Find Full Text PDFJ Plant Physiol
November 2024
Instituto de Investigaciones Químico Biológicas, Laboratorio de Biotecnología Molecular de Plantas, Universidad Michoacana de San Nicolás de Hidalgo, Ed U3, Ciudad Universitaria, Morelia, Michoacán, Mexico, CP 58030. Electronic address:
The target of rapamycin (TOR) signaling pathway is critical for plant growth and stress adaptation through maintaining the proper balance between cell proliferation and differentiation. Here, by using BX517, an inhibitor of the mammalian phosphoinositide-dependent protein kinase 1 (PDK1), we tested the hypothesis that a plant ortholog of PDK1 could influence the TOR complex activity and its target, the S6 ribosomal protein kinase (S6K) in Arabidopsis seedlings. Through locally applying sucrose to leaves, which promotes root growth and plant biomass production via TOR signaling, we could demonstrate the opposite trend upon BX517 treatment, which antagonized sucrose-induced plant growth and overly decreased root development through inhibiting the expression of mitotic cyclins CYCB1 and CYCA3 in root meristems.
View Article and Find Full Text PDFFront Cell Dev Biol
November 2024
Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), University of Naples "Federico II", Naples, Italy.
Introduction: During mitosis, chromosome alignment at the mitotic spindle equator grants correct chromosome segregation and proper nuclei formation in daughter cells. The kinesin 8 family member Kif18A plays a crucial role for chromosome alignment by localizing at the kinetochore-microtubule (K-MT) plus ends to dampen MT dynamics and stabilize K-MT attachments. Kif18A action is directly antagonized by the master mitotic kinase cyclin B-dependent kinase 1 (Cdk1) and is promoted by protein phosphatase 1 (PP1).
View Article and Find Full Text PDFHeliyon
November 2024
Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
Background: Non-small cell lung cancer (NSCLC) remains a leading cause of cancer-related mortality. Chemotherapy is crucial in NSCLC treatment, and targeting Wee1 kinase, a key regulator of the G2/M cell cycle checkpoint, may enhance the efficacy of cytotoxic agents. This study investigates the potential of the Wee1 inhibitor MK-1775 in combination with gemcitabine and pemetrexed to enhance cytotoxicity in NSCLC cell lines.
View Article and Find Full Text PDFNat Cancer
December 2024
Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA.
Despite the abundance of somatic structural variations (SVs) in cancer, the underlying molecular mechanisms of their formation remain unclear. In the present study, we used 6,193 whole-genome sequenced tumors to study the contributions of transcription and DNA replication collisions to genome instability. After deconvoluting robust SV signatures in three independent pan-cancer cohorts, we detected transcription-dependent, replicated-strand bias, the expected footprint of transcription-replication collision (TRC), in large tandem duplications (TDs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!