Periodontitis is a progressive inflammatory skeletal disease characterized by periodontal tissue destruction, alveolar bone resorption, and tooth loss. Chronic inflammatory response and excessive osteoclastogenesis play essential roles in periodontitis progression. Unfortunately, the pathogenesis that contributes to periodontitis remains unclear. As a specific inhibitor of the mTOR (mammalian/mechanistic target of rapamycin) signaling pathway and the most common autophagy activator, rapamycin plays a vital role in regulating various cellular processes. The present study investigated the effects of rapamycin on osteoclast (OC) formation in vitro and its effects on the rat periodontitis model. The results showed that rapamycin inhibited OC formation in a dose-dependent manner by up-regulating the Nrf2/GCLC signaling pathway, thus suppressing the intracellular redox status, as measured by 2',7'-dichlorofluorescein diacetate and MitoSOX. In addition, rather than simply increasing the autophagosome formation, rapamycin increased the autophagy flux during OC formation. Importantly, the anti-oxidative effect of rapamycin was regulated by an increase in autophagy flux, which could be attenuated by blocking autophagy with bafilomycin A1. In line with the in vitro results, rapamycin treatment attenuated alveolar bone resorption in rats with lipopolysaccharide-induced periodontitis in a dose-dependent manner, as assessed by micro-computed tomography, hematoxylin-eosin staining, and tartrate-resistant acid phosphatase staining. Besides, high-dose rapamycin treatment could reduce the serum levels of proinflammatory factors and oxidative stress in periodontitis rats. In conclusion, this study expanded our understanding of rapamycin's role in OC formation and protection from inflammatory bone diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10268267PMC
http://dx.doi.org/10.1021/acsomega.3c01289DOI Listing

Publication Analysis

Top Keywords

alveolar bone
12
rapamycin
9
oxidative stress
8
bone resorption
8
signaling pathway
8
dose-dependent manner
8
autophagy flux
8
rapamycin treatment
8
periodontitis
6
formation
5

Similar Publications

Single-Cell and Spatial Multi-Omics Analysis Reveal That Targeting JAG1 in Epithelial Cells Reduces Periodontal Inflammation and Alveolar Bone Loss.

Int J Mol Sci

December 2024

Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510000, China.

Mucosal immunity plays a critical role in the pathogenesis of inflammatory immune diseases. This study leverages single-cell RNA sequencing, spatial transcriptomics, and spatial proteomics to compare the cellular mechanisms involved in periodontitis between humans and mice, aiming to develop precise strategies to protect the gingival mucosal barrier. We identified key conserved and divergent features in cellular landscapes and transcriptional profiles across the two species, underscoring the complexity of inflammatory responses and immune dynamics in periodontitis.

View Article and Find Full Text PDF

: the mandibular foramen is an essential anatomic landmark in performing various dental and surgical procedures, including inferior alveolar nerve block (IANB). However, its position may vary based on the individual morpho-functional features of the skull and face. This study aims to conduct a personalized assessment of the location of the mandibular foramen in various shapes of skulls, faces, and mandibles.

View Article and Find Full Text PDF

The purpose of this case report is to examine the management of vestibular bone fenestration during alveolar socket preservation using the Periosteal Inhibition (PI) approach. Here, for the first time, the PI technique, which has been shown to be successful in maintaining intact cortical bone, is examined in the context of a bone defect. : After an atraumatic extraction of a damaged tooth, a vestibular bone fenestration was discovered in the 62-year-old male patient.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a chronic and lethal interstitial lung disease (ILD) of unknown origin, characterized by limited treatment efficacy and a fibroproliferative nature. It is marked by excessive extracellular matrix deposition in the pulmonary parenchyma, leading to progressive lung volume decline and impaired gas exchange. The chemokine system, a network of proteins involved in cellular communication with diverse biological functions, plays a crucial role in various respiratory diseases.

View Article and Find Full Text PDF

Dental implants are essential for the prosthetic rehabilitation of edentulous patients, requiring adequate bone volume and density for osseointegration and load support. The posterior region of the maxilla, commonly deficient in bone quality and quantity, represents a clinical challenge. This case series reports an analysis involving 69 dental implants in the atrophic maxilla of nine patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!