A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

NRPreTo: A Machine Learning-Based Nuclear Receptor and Subfamily Prediction Tool. | LitMetric

NRPreTo: A Machine Learning-Based Nuclear Receptor and Subfamily Prediction Tool.

ACS Omega

Department of Computer Science & Engineering, University of North Texas, Denton, Texas TX 76203, United States.

Published: June 2023

The nuclear receptor (NR) superfamily includes phylogenetically related ligand-activated proteins, which play a key role in various cellular activities. NR proteins are subdivided into seven subfamilies based on their function, mechanism, and nature of the interacting ligand. Developing robust tools to identify NR could give insights into their functional relationships and involvement in disease pathways. Existing NR prediction tools only use a few types of sequence-based features and are tested on relatively similar independent datasets; thus, they may suffer from overfitting when extended to new genera of sequences. To address this problem, we developed Nuclear Receptor Prediction Tool (NRPreTo), a two-level NR prediction tool with a unique training approach where in addition to the sequence-based features used by existing NR prediction tools, six additional feature groups depicting various physiochemical, structural, and evolutionary features of proteins were utilized. The first level of NRPreTo allows for the successful prediction of a query protein as NR or non-NR and further subclassifies the protein into one of the seven NR subfamilies in the second level. We developed Random Forest classifiers to test on benchmark datasets, as well as the entire human protein datasets from RefSeq and Human Protein Reference Database (HPRD). We observed that using additional feature groups improved the performance. We also observed that NRPreTo achieved high performance on the external datasets and predicted 59 novel NRs in the human proteome. The source code of NRPreTo is publicly available at https://github.com/bozdaglab/NRPreTo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10268018PMC
http://dx.doi.org/10.1021/acsomega.3c00286DOI Listing

Publication Analysis

Top Keywords

nuclear receptor
12
prediction tool
12
existing prediction
8
prediction tools
8
sequence-based features
8
additional feature
8
feature groups
8
human protein
8
prediction
6
nrpreto
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!