Targeting complement C5a to improve radiotherapy sensitivity in non-small cell lung cancer.

Transl Lung Cancer Res

Department of Oncology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China.

Published: May 2023

Background: Tumor local and distant relapse recurrence after radiotherapy (RT) is one of the critical factors leading to poor prognosis. The effective antitumor effects of RT are dependent upon the participation of innate and adaptive components of the immune system. C5a/C5aR1 signaling can regulate antitumor immune effect in the tumor microenvironment (TME). Thus, exploring the changes and mechanism in the TME induced by RT-mediated complement activation may provide a novel perspective for reversing radioresistance.

Methods: First, fractionated radiation of 8 Gy ×3 fractions were targeted at Lewis lung carcinoma (LLC) tumor-bearing female mice to measure the infiltration of CD8 T cell and analyze the RNA sequencing (RNA-seq) in RT-recruited CD8 T cells. Second, tumor growth was measured in LLC tumor-bearing mice treated with RT either with or without C5aR1 inhibitor to clarify the antitumor effect of RT combined with C5aR1 inhibitor. Third, we detected the expression of C5a/C5aR1 and their signaling pathways on radiated tumor tissues. Furthermore, we investigated the expression of C5a in tumor cells at different time points after different doses of RT.

Results: In our system, RT induced the increased infiltration of CD8 T cells and local activation of complement C5a/C5aR. Concurrent administration of RT and blocking of C5aR improved radiosensitivity and tumor-specific immune response, which was reflected by high C5aR expression in CD8 T cells. The AKT/NF-κB pathway was found to be an important signaling pathway in C5a/C5aR axis mediation by RT.

Conclusions: RT promotes the release of C5a from tumor cells and leads to up-regulation of C5aR1 expression via the AKT/NF-κB pathway. Inhibition of the combination of complement C5a and C5aR could improve RT sensitivity. Our work provides evidence that the combination of RT and C5aR blockade opens a new window of opportunity to promote anti-tumor therapeutic effects in lung cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10261863PMC
http://dx.doi.org/10.21037/tlcr-23-258DOI Listing

Publication Analysis

Top Keywords

cd8 cells
12
complement c5a
8
lung cancer
8
c5a/c5ar1 signaling
8
llc tumor-bearing
8
infiltration cd8
8
c5ar1 inhibitor
8
c5a tumor
8
tumor cells
8
akt/nf-κb pathway
8

Similar Publications

Integrative analysis of Ewing's sarcoma reveals that the MIF-CD74 axis is a target for immunotherapy.

Cell Commun Signal

January 2025

Department of Musculoskeletal Tumor, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China.

Background: Ewing's sarcoma (EwS), a common pediatric bone cancer, is associated with poor survival due to a lack of therapeutic targets for immunotherapy or targeted therapy. Therefore, more effective treatment options are urgently needed.

Methods: Since novel immunotherapies may address this need, we performed an integrative analysis involving single-cell RNA sequencing, cell function experiments, and humanized models to dissect the immunoregulatory interactions in EwS and identify strategies for optimizing immunotherapeutic efficacy.

View Article and Find Full Text PDF

Introduction: Small-cell lung cancer (SCLC) is a highly malignant neuroendocrine tumour, and concurrent chemoradiotherapy is the current recommended treatment for limited-stage SCLC. However, the overall survival (OS) of patients with SCLC remains poor. Therefore, improving the survival of patients with SCLC and benefitting more patients are urgent clinical requirements.

View Article and Find Full Text PDF

HDAC and MEK inhibition synergistically suppresses HOXC6 and enhances PD-1 blockade efficacy in BRAF-mutant microsatellite stable colorectal cancer.

J Immunother Cancer

January 2025

Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China

Background: B-Raf proto-oncogene, serine/threonine kinase (BRAF)-mutant microsatellite stable (MSS) colorectal cancer (CRC) constitutes a distinct CRC subgroup, traditionally perceived as minimally responsive to standard therapies. Recent clinical attempts, such as BRAF inhibitors (BRAFi) monotherapy and combining BRAFi with other inhibitors, have yielded unsatisfactory efficacy. This study aims to identify a novel therapeutic strategy for this challenging subgroup.

View Article and Find Full Text PDF

Purpose: Anti-programmed cell death 1 (PD1) is the first-choice treatment in patients with advanced cutaneous squamous cell carcinoma (cSCC), when curative options are unavailable. However, reliable biomarkers for patient selection are still lacking.

Experimental Design: In this translational study, clinical annotations, tissue and liquid biopsies were acquired to investigate the association between sustained objective responses and transcriptional profiles, immune cell dynamics in tumor tissue and peripheral blood samples, as well as circulating cytokine levels.

View Article and Find Full Text PDF

Background: SL-172154 is a hexameric fusion protein adjoining the extracellular domain of SIRPα to the extracellular domain of CD40L via an inert IgG-derived Fc domain. In preclinical studies, a murine equivalent SIRPα-Fc-CD40L fusion protein provided superior antitumor immunity in comparison to CD47- and CD40-targeted antibodies. A first-in-human phase I trial of SL-172154 was conducted in patients with platinum-resistant ovarian cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!