Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Stimulating electron transitions and promoting exciton dissociation are crucial for improving the photocatalytic performance of polymeric carbon nitride (CN) yet still challenging. Herein, a novel CN with C dopant and asymmetric structure (CC-UCN ) is ingeniously synthesized. The obtained CC-UCN not only reinforces the intrinsic π→π* electron transitions, but also successfully awakens additional n→π* electron transitions. Besides, charge centers dislocation caused by symmetry breaking induces a spontaneous polarized electric field, effectively breaking the constraints of Coulomb electrostatic interaction between electrons and holes and driving their directional migration. Along with the spatial separation of reduction and oxidation sites, CC-UCN shows exceptional O activation and holes oxidation efficiency, thus exhibits a high degradation rate constant (0.201 min ) and mineralization rate (80.1%) for bisphenol A (BPA)(far outperforming pristine and other modified CNs). This work proposes a novel perspective for developing high-efficiency photocatalysts and comprehending the underlying mechanism of O activation and holes oxidation for pollutant degradation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202302510 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!