Flexible Luminescent Hydrogen-bonded Organic Framework for the Separation of Benzene and Cyclohexane.

Small

Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, No. 393, Binshui West Road, Tianjin, 300387, P. R. China.

Published: October 2023

AI Article Synopsis

  • A new phenothiazine compound (PTTCN) was created to develop functional crystals that can separate benzene from cyclohexane through selective adsorption.
  • PTTCN can crystallize in two forms with different fluorescence colors, where one form (ax) can selectively absorb benzene while the other (eq) forms a framework that can release or reabsorb benzene.
  • The process allows for a purification of benzene up to 96.5% from a mixture with cyclohexane, and the crystals can be reused due to their reversible transformation capabilities.

Article Abstract

A nonplanar phenothiazine derivative with three cyano moieties (PTTCN) is designed and synthesized to achieve functional crystals for absorptive separation of benzene and cyclohexane. PTTCN can crystallize into two kinds of crystals with different fluorescence colors in different solvent systems. The molecules in two crystals are in different stereo isomeric forms of nitrogen, quasi axial (ax), and quasi equatorial (eq). The crystals with blue fluorescence in ax form may selectively adsorb benzene by a single-crystal-to-single-crystal (SCSC) transformation, but separated benzene from a benzene/cyclohexane equimolar mixture with a low purity of 79.6%. Interestingly, PTTCN molecules with eq form and benzene co-assembled to construct a hydrogen-bonded framework (X-HOF-4) with S-type solvent channels and yellow-green fluorescence, and can release benzene to form nonporous guest-free crystal under heating. Such nonporous crystals strongly favor aromatic benzene over cyclohexane and may selectively reabsorb benzene from benzene/cyclohexane equimolar mixture to recover original framework, and the purity of benzene can reach ≈96.5% after release from framework. Moreover, reversible transformation between the nonporous crystals and the guest-containing crystals allows the material to be reused.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202304340DOI Listing

Publication Analysis

Top Keywords

benzene cyclohexane
12
benzene
9
separation benzene
8
benzene benzene/cyclohexane
8
benzene/cyclohexane equimolar
8
equimolar mixture
8
nonporous crystals
8
crystals
7
flexible luminescent
4
luminescent hydrogen-bonded
4

Similar Publications

Understanding the permeation of drugs through the intercellular lipid matrix of the stratum corneum layer of skin is crucial for effective transdermal delivery. Molecular dynamics simulations can provide molecular insights into the permeation process. In this study, we developed a new atomistic model representing the multilamellar arrangement of lipids in the stratum corneum intercellular space for permeation studies.

View Article and Find Full Text PDF

Introducing halogen-bonded gates into zeolitic frameworks for efficient benzene/cyclohexene/cyclohexane separation.

Chem Sci

January 2025

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, GBRCE for Functional Molecular Engineering, IGCME, Sun Yat-Sen University Guangzhou 510275 China

The separation of C cyclic hydrocarbons (benzene, cyclohexene, and cyclohexane) is one of the most challenging chemical processes in the petrochemical industry. Herein, we design and synthesize a new SOD-topology metal azolate framework (MAF) with aperture gating behaviour controlled by C-Br⋯N halogen bonds, which exhibits distinct temperature- and guest-dependent adsorption behaviours for benzene/cyclohexene/cyclohexane. More importantly, the MAF enables the efficient purification of benzene from its binary and ternary mixtures (selectivity up to 113 ± 2; purity up to 98% +), which is the highest record for benzene/cyclohexane/cyclohexene separation to date.

View Article and Find Full Text PDF

AC plasmas directly excited within liquid hydrocarbons were investigated for the production of hydrogen and unsaturated C hydrocarbon in a recirculating liquid "jet" flow configuration. Arc discharges were excited at two different frequencies (60 Hz and 17.3 kHz) in C-C hydrocarbons (hexane, cyclohexane, benzene, toluene, and xylene) to produce H, CH, CH, and CH, along with liquid and solid carbon byproducts.

View Article and Find Full Text PDF

Co-occurrence of PFASs, TPHs, and BTEX in subsurface soils: Impacts on native microbial communities and implications for bioremediation.

Environ Res

December 2024

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China; University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:

This study investigates the co-occurrence of per- and polyfluoroalkyl substances (PFASs), petroleum hydrocarbons (TPHs) and benzene, toluene, ethylbenzene, and xylene (BTEX) and their effects on the indigenous microbial communities in soils at a contaminated site with a history of petroleum refinery operations. PFASs concentrations were in the range of 5.65-6.

View Article and Find Full Text PDF

Isosteric 3D Bicyclo[1.1.1]Pentane (BCP) Core-Based Lipids for mRNA Delivery and CRISPR/Cas Gene Editing.

J Am Chem Soc

December 2024

Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States.

Lipid nanoparticles (LNPs) are an essential component of messenger RNA (mRNA) vaccines and genome editing therapeutics. Ionizable amino lipids, which play the most crucial role in enabling mRNA to overcome delivery barriers, have, to date, been restricted to two-dimensional (2D) architectures. Inspired by improved physicochemical properties resulting from the incorporation of three-dimensionality (3D) into small-molecule drugs, we report the creation of 3D ionizable lipid designs through the introduction of bicyclo[1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!