Background: Neoadjuvant chemotherapy (NAC) has been recognized as an effective therapeutic option for locally advanced gastric cancer as it is expected to reduce tumor size, increase the resection rate, and improve overall survival. However, for patients who are not responsive to NAC, the best operation timing may be missed together with suffering from side effects. Therefore, it is paramount to differentiate potential respondents from non-respondents. Histopathological images contain rich and complex data that can be exploited to study cancers. We assessed the ability of a novel deep learning (DL)-based biomarker to predict pathological responses from images of hematoxylin and eosin (H&E)-stained tissue.

Methods: In this multicentre observational study, H&E-stained biopsy sections of patients with gastric cancer were collected from four hospitals. All patients underwent NAC followed by gastrectomy. The Becker tumor regression grading (TRG) system was used to evaluate the pathologic chemotherapy response. Based on H&E-stained slides of biopsies, DL methods (Inception-V3, Xception, EfficientNet-B5, and ensemble CRSNet models) were employed to predict the pathological response by scoring the tumor tissue to obtain a histopathological biomarker, the chemotherapy response score (CRS). The predictive performance of the CRSNet was evaluated.

Results: 69,564 patches from 230 whole-slide images of 213 patients with gastric cancer were obtained in this study. Based on the F1 score and area under the curve (AUC), an optimal model was finally chosen, named the CRSNet model. Using the ensemble CRSNet model, the response score derived from H&E staining images reached an AUC of 0.936 in the internal test cohort and 0.923 in the external validation cohort for predicting pathological response. The CRS of major responders was significantly higher than that of minor responders in both internal and external test cohorts (both p < 0.001).

Conclusion: In this study, the proposed DL-based biomarker (CRSNet model) derived from histopathological images of the biopsy showed potential as a clinical aid for predicting the response to NAC in patients with locally advanced GC. Therefore, the CRSNet model provides a novel tool for the individualized management of locally advanced gastric cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10120-023-01407-zDOI Listing

Publication Analysis

Top Keywords

gastric cancer
16
histopathological images
8
neoadjuvant chemotherapy
8
locally advanced
8
advanced gastric
8
predict pathological
8
patients gastric
8
chemotherapy response
8
ensemble crsnet
8
pathological response
8

Similar Publications

To date, no prospective study has been conducted to compare the safety and effectiveness of endoscopic snare resection with an elastic band (ESR-EB) and endoscopic snare resection with a transparent cap (ESR-C) for treating gastric muscularis propria lesions. We aimed to compare the safety and effectiveness of ESR-EB with those of ESR-C for gastric muscularis propria lesions less than 10 mm in diameter. A total of 64 patients were enrolled prospectively from May 2023 to November 2023 at Shenzhen Hospital of Southern Medical University, the First Affiliated Hospital of Shantou University, and the People's Hospital of Zhongshan City.

View Article and Find Full Text PDF

Impaired nutritional status is closely related to the development of sarcopenia and poor quality of life (QoL) in cancer patients. This study aimed to investigate the association of Geriatric Nutritional Risk Index (GNRI) with sarcopenia and QoL in patients with gastric cancer (GC). Sarcopenia was diagnosed based on the Asian Working Group for Sarcopenia 2019 criteria.

View Article and Find Full Text PDF

Optimizing T cell inflamed signature through a combination biomarker approach for predicting immunotherapy response in NSCLC.

Sci Rep

December 2024

Interventional Oncology, Johnson & Johnson Enterprise Innovation, Inc, 10th Floor 255 Main St, 02142, Cambridge, Boston, MA, USA.

The introduction of anti-PD-1/PD-L1 therapies revolutionized treatment for advanced non-small cell lung cancer (NSCLC), yet response rates remain modest, underscoring the need for predictive biomarkers. While a T cell inflamed gene expression profile (GEP) has predicted anti-PD-1 response in various cancers, it failed in a large NSCLC cohort from the Stand Up To Cancer-Mark (SU2C-MARK) Foundation. Re-analysis revealed that while the T cell inflamed GEP alone was not predictive, its performance improved significantly when combined with gene signatures of myeloid cell markers.

View Article and Find Full Text PDF

Background: Benzodiazepines are the third most misused medication, with many patients having their first exposure during a surgical episode. We sought to characterize factors associated with new persistent benzodiazepine use (NPBU) among patients undergoing cancer surgery.

Patients And Methods: Patients who underwent cancer surgery between 2013 and 2021 were identified using the IBM-MarketScan database.

View Article and Find Full Text PDF

Longitudinal CT Radiomics to Predict Progression-free Survival in Patients with Locally Advanced Gastric Cancer After Neoadjuvant Chemotherapy.

Acad Radiol

December 2024

Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China (B.W., X.H., Z.Z., Z.L., S.L.). Electronic address:

Rationale And Objectives: To develop and validate a radiomics signature, utilizing baseline and restaging CT, for preoperatively predicting progression-free survival (PFS) after neoadjuvant chemotherapy (NAC) in locally advanced gastric cancer (LAGC).

Methods: A total of 316 patients with LAGC who received NAC followed by gastrectomy were retrospectively included in this single-center study; these patients were split into two cohorts, one for training (n = 243) and the other for validation (n = 73), based on the different districts of our hospital. A total of 1316 radiomics features were extracted from the volume of interest of the gastric-cancer lesion on venous phase CT images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!