Traditionally, the mouse has been the favoured vertebrate model for biomedical research, due to its experimental and genetic tractability. However, non-rodent embryological studies highlight that many aspects of early mouse development, such as its egg-cylinder gastrulation and method of implantation, diverge from other mammals, thus complicating inferences about human development. Like the human embryo, rabbits develop as a flat-bilaminar disc. Here we constructed a morphological and molecular atlas of rabbit development. We report transcriptional and chromatin accessibility profiles for over 180,000 single cells and high-resolution histology sections from embryos spanning gastrulation, implantation, amniogenesis and early organogenesis. Using a neighbourhood comparison pipeline, we compare the transcriptional landscape of rabbit and mouse at the scale of the entire organism. We characterize the gene regulatory programmes underlying trophoblast differentiation and identify signalling interactions involving the yolk sac mesothelium during haematopoiesis. We demonstrate how the combination of both rabbit and mouse atlases can be leveraged to extract new biological insights from sparse macaque and human data. The datasets and computational pipelines reported here set a framework for a broader cross-species approach to decipher early mammalian development, and are readily adaptable to deploy single-cell comparative genomics more broadly across biomedical research.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41556-023-01174-0DOI Listing

Publication Analysis

Top Keywords

atlas rabbit
8
rabbit development
8
single-cell comparative
8
comparative genomics
8
rabbit mouse
8
development
5
development model
4
model single-cell
4
genomics traditionally
4
mouse
4

Similar Publications

Complex neurophysiological and morphologic experiments require suitable animal models for investigation. The rabbit is one of the most successful models for studying spinal cord functions owing to its substantial size. However, achieving precise surgical access to specific spinal regions requires a thorough understanding of the spinal cord's cytoarchitectonic structure and its spatial relationship with the vertebrae.

View Article and Find Full Text PDF

Microstructural, Micromechanical Atlas of the Temporomandibular Joint Disc.

J Dent Res

May 2024

State Key Laboratory of Oral Diseases, & National Clinical Research Center for Oral Disease, & West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.

The temporomandibular joint (TMJ) disc is mainly composed of collagen, with its arrangement responding to efficient stress distribution. However, microstructural and micromechanical transformations of the TMJ disc under resting, functional, and pathological conditions remain unclear. To address this, our study presents a high-resolution microstructural and mechanical atlas of the porcine TMJ disc.

View Article and Find Full Text PDF

Background: A previous controlled trial of autologous haematopoietic stem-cell transplantation (HSCT) in patients with refractory Crohn's disease did not meet its primary endpoint and reported high toxicity. We aimed to assess the safety and efficacy of HSCT with an immune-ablative regimen of reduced intensity versus standard of care in this patient population.

Methods: This open-label, multicentre, randomised controlled trial was conducted in nine National Health Service hospital trusts across the UK.

View Article and Find Full Text PDF

Background: Mycotoxins, such as aflatoxin and ochratoxin A (OTA), are found at measurable levels in many staple foods; the health implications of long-term exposure of such toxins are poorly understood. Increasing evidence has confirmed the important role of OTA in upregulation of oxidative stress- and inflammatory response-induced tissue injury. However, it remains unknown whether ochratoxin A can promote chronic colitis and its associated colon cancer (CRC) development, and potential molecular mechanism.

View Article and Find Full Text PDF

Background: This study evaluated total-body glucose metabolism in a preclinical lab animal, the rabbit, by employing a dynamic glucose metabolic image obtained with total-body fluorine-18 fluorodeoxyglucose ( 18 F-FDG) PET/computed tomography (PET/CT).

Methods: The dynamic total-body PET/CT system was used to obtain glucose metabolic imaging from 10 sedated body-matched rabbits. The standard uptake value (SUV) of 18 F-FDG was used to evaluate glucose metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!