Microsatellite markers, also known as short tandem repeats (STRs), are important for marker-assisted selection to detect genetic polymorphism, and they are uniformly distributed in eukaryotic genomes. To analyze the relationship between microsatellite loci and lactation traits of Holstein cows in Xinjiang, 175 lactating cows with similar birth dates, the same parity, and similar calving dates were selected, and 10 STR loci closely linked to quantitative trait loci were used to analyze the correlation between each STR locus and four lactation traits (daily milk yield, milk fat percentage, milk protein percentage, and lactose percentage). All loci showed different degrees of genetic polymorphism. The average values of observed alleles, effective alleles, expected heterozygosity, observed heterozygosity, and polymorphic information content of the 10 STR loci were 10, 3.11, 0.62, 0.64, and 0.58, respectively. Chi-square and G-square tests showed that all populations of loci were in accordance with the Hardy-Weinberg equilibrium. Analysis of the correlation between STR locus genotype and lactation performance in the whole lactation period showed three loci (namely, BM143, BM415, and BP7) with no significant correlation with all lactation traits, two loci (BM302 and UWCA9) related to milk yield, three loci (BM103, BM302, and BM6425) related to milk fat percentage, two loci (BM302 and BM6425) related to milk protein percentage, and three loci (BM1443, BM302, and BMS1943) related to lactose percentage. The microsatellite loci selected in this study showed rich polymorphism in the experimental dairy cow population and were related to the lactation traits, which can be used for the evaluation of genetic resources and early breeding and improvement of Holstein dairy cows in Xinjiang.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10271901 | PMC |
http://dx.doi.org/10.1007/s11250-023-03651-y | DOI Listing |
J Anim Sci
January 2025
Selko USA, Indianapolis, IN 46231, USA.
Seventy-two non-lactating, pregnant Angus cows (initial body weight (BW) = 637 ± 13 kg; body condition score (BCS) = 5.5 ± 0.07 yr; and age = 6.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China. Electronic address:
Milk production is the most important economic trait of dairy goats and a key indicator for genetic improvement and breeding. However, milk yield is a complex phenotypic trait, and its genetic mechanisms are still not fully understood. This study focuses on dairy goats and non-dairy goats.
View Article and Find Full Text PDFAnimal
December 2024
Institute of Animal Science and Technology, Universitat Politècnica de València, Camino de Vera, s/n. 46022 Valencia, Spain.
Genetic selection for growth rate has often been related with potential negative effects on various reproductive traits across different species. Using rabbit as a model, this study has evaluated for the first time how genetic selection for growth rate has affected feed efficiency, resource allocation, blood traits, reproductive performance and survival during five reproductive cycles in rabbit does. To this end, we used 88 reproductive rabbit females from two vitrified and rederived populations of the same paternal line, differing only in 18 generations of genetic selection for growth rate (n = 44 for R19V and n = 44 for RV37V).
View Article and Find Full Text PDFJ Dairy Sci
December 2024
Sistema Lechero, Instituto Nacional de Investigación Agropecuaria, Ruta 50 km 11, CP 70002 Colonia, Uruguay. Electronic address:
The purpose of this experiment was to evaluate the transference of passive immunity (TPI) and growth achieved by calves born to dams with low or high SCC at dry-off and fed with colostrum from cows with low or high SCC at dry-off. Forty multiparous (3.2 lactations; SD = 1.
View Article and Find Full Text PDFBMC Genomics
December 2024
Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
Background: Teat number is one of the most important indicators to evaluate the lactation performance of sows, and increasing the teat number has become an important method to improve the economic efficiency of farms. Therefore, it is particularly important to deeply analyze the genetic mechanism of teat number traits in pigs. In this study, we detected Single Nucleotide Ploymorphism (SNP), Insertion-Deletion (InDel) and Structural variant (SV) by high-coverage whole-genome resequencing data, and selected teat number at birth and functional teat number as two types of teat number traits for genome-wide association study (GWAS) to reveal candidate genes associated with pig teat number traits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!