Preparation of chitosan nanoparticles for simultaneous drug delivery of dacarbazine and enoxaparin in melanoma.

Carbohydr Polym

Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran. Electronic address:

Published: September 2023

The aim of this study was to investigate the anti-melanoma and anti-angiogenic effects of enoxaparin surface-coated dacarbazine-loaded chitosan nanoparticles (Enox-Dac-Chi NPs). The prepared Enox-Dac-Chi NPs had a particle size of 367.95 ± 1.84 nm, zeta potential of -7.12 ± 0.25 mV, efficiency of drug loading (DL%) of 73.90 ± 3.84 %, and attached enoxaparin percentage of 98.53 ± 0.96 %. Both drugs had extended-release profiles and approximately 96 % of enoxaparin and 67 % dacarbazine were released within 8 h. The Enox-Dac-Chi NPs with IC of 59.60 ± 1.25 μg/ml were the most cytotoxic against melanoma cancer cells compared with chitosan nanoparticles containing only dacarbazine (Dac-Chi NPs) and free dacarbazine. There was no significant difference between the cellular uptake of Chi NPs and enoxaparin coated Chi NPs (Enox-Chi NPs) in B16F10 cells. Enox-Chi NPs with an average anti-angiogenic score of 1.75 ± 0.125 had more anti-angiogenic effect than enoxaparin. The results showed that simultaneous delivery of dacarbazine and enoxaparin by chitosan nanoparticles can enhance the anti-melanoma effect of dacarbazine. Additionally, enoxaparin can prevent the melanoma metastasis by its anti-angiogenic activity. Thus, the designed nanoparticles can be introduced as effective drug delivery vehicles for the treatment and prevention of metastatic melanoma.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2023.121041DOI Listing

Publication Analysis

Top Keywords

chitosan nanoparticles
16
enox-dac-chi nps
12
drug delivery
8
delivery dacarbazine
8
enoxaparin
8
dacarbazine enoxaparin
8
nps
8
chi nps
8
enox-chi nps
8
dacarbazine
6

Similar Publications

Polyamide (PA) has notable physical and chemical properties and is one of the most versatile synthetic materials in the industrial sector. However, its hydrophobicity creates significant challenges in its beneficiation and modification. Modifications of PA with chitosan nanoparticles (CNPs) can improve its undesired properties but are rarely found in the literature due to the weak interaction between the chemical groups of both structures.

View Article and Find Full Text PDF

Double-stranded RNA (dsRNA) mediated RNA interference (RNAi) is a tool in functional gene study and pest control. However, RNAi efficiency in Lepidoptera is low compared to the RNAi sensitive Coleoptera. Previous studies on RNAi in the silkworm Bombyx mori, the lepidopteran model insect, were performed by injection only.

View Article and Find Full Text PDF

The present study intended to investigate the properties of collagen peptide (CP)-astragaloside (AG) nanocomplexes (CPANs) improved oxidized hydroxypropyl starch (OHS)/chitosan (CS) (OC) film and to explore the preservation of chilled beef. The results indicated that AG significantly enhanced the stability, antioxidant capacity, and antibacterial properties of CP through mechanisms like static quenching and hydrophobic interactions. The incorporation of CPANs improved thickness, swellability, and water vapor blocking, UV-blocking and mechanical properties, antioxidant and antibacterial activity of OC film.

View Article and Find Full Text PDF

Cotton textiles with persistent antibacterial qualities are crucial in halting the spread of bacteria and other infections. However, fugitive bacteria and drug-resistant pathogens have rendered tremendous challenges in the development of cotton fabrics with long-lasting antibacterial efficacy. The work aimed to innovatively propose a functional cotton fabric integrating intelligent bacteria-capturing and dual antibacterial properties for efficacious personal health management.

View Article and Find Full Text PDF

Currently, most peripheral nerve injuries are incurable mainly due to excessive reactive oxygen species (ROS) generation in inflammatory tissues, which can further exacerbate localized tissue injury and cause chronic diseases. Although promising for promoting nerve regeneration, stem cell therapy still suffers from abundant intrinsic limitations, mainly including excessive ROS in lesions and inefficient production of growth factors (GFs). Biomaterials that scavenge endogenous ROS and promote GFs secretion might overcome such limitations and thus are being increasingly investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!