The peculiar electrophysiological properties of the sinoatrial node and the cardiac conduction system are key components of the normal physiology of cardiac impulse generation and propagation. Multiple genes and transcription factors and metabolic proteins are involved in their development and regulation. In this review, we have summarized the genetic underlying causes, key clinical findings, and the latest available clinical evidence. We will discuss clinical diagnosis and management of the genetic conditions associated with conduction disorders that are more prevalent in clinical practice, for this reason, very rare genetic diseases presenting sinus node or cardiac conduction system abnormalities are not discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ccl.2023.03.014 | DOI Listing |
Cells
December 2024
Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
Induced pluripotent stem cell (iPSC)-derived biological pacemakers have emerged as an alternative to traditional electronic pacemakers for managing cardiac arrhythmias. While effective, electronic pacemakers face challenges such as device failure, lead complications, and surgical risks, particularly in children. iPSC-derived pacemakers offer a promising solution by mimicking the sinoatrial node's natural pacemaking function, providing a more physiological approach to rhythm control.
View Article and Find Full Text PDFCell Rep
December 2024
Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA 02142, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; Cardiology Division, Massachusetts General Hospital, Boston, MA 02114, USA. Electronic address:
We sought to characterize cellular composition across the cardiovascular system of the healthy Wistar rat, an important model in preclinical cardiovascular research. We performed single-nucleus RNA sequencing (snRNA-seq) in 78 samples in 10 distinct regions, including the four chambers of the heart, ventricular septum, sinoatrial node, atrioventricular node, aorta, pulmonary artery, and pulmonary veins, which produced 505,835 nuclei. We identified 26 distinct cell types and additional subtypes, with different cellular composition across cardiac regions and tissue-specific transcription for each cell type.
View Article and Find Full Text PDFFront Med (Lausanne)
December 2024
Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom.
Background: The sinoatrial node (SN) generates the heart rate (HR). Its spontaneous activity is regulated by a complex interplay between the modulation by the autonomic nervous system (ANS) and intrinsic factors including ion channels in SN cells. However, the systemic and intrinsic regulatory mechanisms are still poorly understood.
View Article and Find Full Text PDFCardiovasc Drugs Ther
December 2024
Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Background: Ivabradine has been identified as a funny current (If) inhibitor in the sinoatrial node (SAN) and is considered an advocated therapeutic agent in chronic heart failure and stable angina. This therapeutic agent has shown positive benefits in maintaining a reduction in heart rate while sustaining hemodynamic stability. Its clinical application is still evolving and the mechanism of action is becoming clearer daily.
View Article and Find Full Text PDFJFMS Open Rep
December 2024
Dick White Referrals, Station Farm, London Road, Six Mile Bottom, Cambridgeshire, UK.
Case Summary: A 6-month-old male entire domestic shorthair cat was presented to the ophthalmology department for nasolacrimal duct cannulation and flushing, and castration under general anaesthesia. On pre-anaesthetic assessment, the cat had a heart rate of 90 beats/min (bpm). Clinical examination was unremarkable, although the cat appeared stressed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!