Using adenohypophyses from normal female rats, we demonstrate that estradiol binds pituitary membranes to one homogeneous population of sites with high affinity [dissociation constant (Kd) = 0.041 +/- 0.014 nM; n = 6] and low capacity [maximum binding (Bmax) = 13.6 +/- 5.6 fmol/mg protein]. The binding is thermolabile. Association experiments show that the best experimental conditions are an overnight incubation at 0 C. When the amount of proteins is increased more than 0.3 mg/ml of membrane suspension, binding is rapidly nonlinear. The presence of 0.5 M leupeptin does not improve the binding. Extensive washing of the membranes does not decrease the amount of sites, indicating that the binding is not loosely attached to the membranes. Parenthetically, it should be noted that the membrane fraction was devoid of the cytosolic enzyme marker, lactate dehydrogenase. Binding is specific for estrogenic compounds. When 100% specific binding was determined in the presence of 10(-6) M diethylstilbestrol, 17 beta-estradiol, estrone, and estriol displaced total binding by 110, 80, and 75%, respectively. Neither 4-OH-tamoxifen nor dihydrotestosterone, progesterone, or cortisol displaced the binding. Taken together, these data argue in favor of the presence of specific membrane recognition sites for estradiol in the rat pituitary.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/endo-119-3-1048 | DOI Listing |
J Phys Chem Lett
January 2025
State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
The Ni-N(His) coordination bond, formed between the nickel ion and histidine residues, is essential for recombinant protein purification, especially in Ni-NTA-based systems for selectively binding polyhistidine-tagged (Histag) proteins. While previous studies have explored its bond strength in a synthetic Ni-NTA-Histag system, the influence of the surrounding protein structure remains less understood. In this study, we used atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS) to quantify the Ni-N(His) bond strength in calprotectin, a biologically relevant protein system.
View Article and Find Full Text PDFInt J Surg
January 2025
Department of Anesthesiology, Jiangxi Cancer Hospital & Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Key Laboratory of Oncology, Nanchang, Jiangxi Province, China.
Nerve growth factor (NGF) is critical in regulating the homeostasis of microglial cells. It activates various signaling pathways that mediate the phosphorylation of cAMP response element-binding protein (CREB) at key regulatory sites. The decrease in phosphorylated CREB (p-CREB) expression is linked to neuroinflammatory responses.
View Article and Find Full Text PDFACS Sens
January 2025
Department of Engineering Physics, McMaster University, 1280 Main Street West, L8S 4L8 Hamilton, Ontario, Canada.
Current approaches for classifying biosensor data in diagnostics rely on fixed decision thresholds based on receiver operating characteristic (ROC) curves, which can be limited in accuracy for complex and variable signals. To address these limitations, we developed a framework that facilitates the application of machine learning (ML) to diagnostic data for the binary classification of clinical samples, when using real-time electrochemical measurements. The framework was applied to a real-time multimeric aptamer assay (RT-MAp) that captures single-frequency (12.
View Article and Find Full Text PDFInflammation
January 2025
Department of Pharmacy, Chinese PLA General Hospital, Beijing, China.
Cholestasis is a multifactorial hepatobiliary disorder, characterized by obstruction of bile flow and accumulation of bile, which in turn causes damage to liver cells and other tissues. In severe cases, it can result in the development of life-threatening conditions, including cirrhosis and liver cancer. Paeoniflorin (PF) has been demonstrated to possess favourable therapeutic potential for the treatment of cholestasis.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, Indiana 47907, United States.
Drug-drug interaction can lead to diminished therapeutic effects or increased toxicity, posing significant risks, especially in polypharmacy, and cytochrome P450 plays an indispensable role in this interaction. Cytochrome P450, responsible for the metabolism and detoxification of most drugs, metabolizes about 90% of Food and Drug Administration-approved drugs, making early detection of potential drug-drug interactions. Over the years, in-silico modeling has become a valuable tool for predicting drug-drug interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!