Valorization of waste streams and C1 gases for sustainable food nutrients and value-added compounds production: Acetate as a promising intermediate.

Sci Total Environ

Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China.

Published: October 2023

Resource recovery from waste streams and C1 gaseous substrates (CO, CO and CH) are of extensive interest due to the insufficient utilization and threats to the environment. From a perspective of sustainability, valorization of waste streams and C1 gases into target energy-rich value-added products in a sustainable way offers tempting approaches for simultaneously alleviating the environmental problems and achieving a circular carbon economy, while it still suffers from the complicated compositions of feedstocks or the low solubility of gaseous feeds. Recently, a C2 feedstock-based biomanufacturing serving acetate as potential next-generation platform has received much attention, where different gaseous or cellulosic wastes are recycling into acetate and then be further processed into a wide range of valuable long-chain compounds. The different alternative waste-processing technologies that are being developed to generate acetate from various wastes or gaseous substrates are summarized, in which gas fermentation and electrochemical reduction from CO represent the most promising routes for achieving high acetate yield. The recent advances and innovations in metabolic engineering for acetate bioconversion into various bioproducts ranging from food nutrients to value-added compounds were then highlighted. The challenges and promising strategies to reinforce microbial acetate conversion were also proposed, which conferred a new horizon for future food and chemical manufacturing with reduced carbon footprint.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.164795DOI Listing

Publication Analysis

Top Keywords

waste streams
12
valorization waste
8
streams gases
8
food nutrients
8
nutrients value-added
8
value-added compounds
8
gaseous substrates
8
acetate
7
gases sustainable
4
sustainable food
4

Similar Publications

Enhanced butanol tolerance and production from puerariae slag hydrolysate by Clostridium beijerinckii through metabolic engineering and process regulation strategies.

Bioresour Technol

January 2025

College of Bioscience and Bioengineering, Institute of Applied Microbiology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China. Electronic address:

Butanol is a more desirable second-generation biomass energy source. Acetone-butanol-ethanol (ABE) fermentation using Clostridium spp. is a promising method for butanol production.

View Article and Find Full Text PDF

High-throughput screening of acetogenic strains for growth and metabolite profiles on readily available biomass.

Bioresour Technol

January 2025

Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium; Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, Ghent, 9042, Belgium. Electronic address:

Abundant biomass, including industrial waste streams and second-generation (2G) and third-generation (3G) feedstocks, offers significant potential for sustainable bioconversion, nevertheless challenges such as fermentation inhibitors, CO losses and substrate selectivity of traditional microbial hosts hinder process efficiency. In this study, we address these challenges by exploring acetogenic bacteria as alternative microbial hosts. Using a newly established high-throughput method, acetogens were evaluated for their capacity to hydrolyse and metabolise variety of substrates derived from 2G and 3G feedstocks and industrial waste streams.

View Article and Find Full Text PDF

Current industrial separation and sorting technologies struggle to efficiently identify and classify a large part of Waste of Electric and Electronic Equipment (WEEE) plastics due to their high content of certain additives. In this study, Raman spectroscopy in combination with machine learning methods was assessed to develop classification models that could improve the identification and separation of Polystyrene (PS), Acrylonitrile Butadiene Styrene (ABS), Polycarbonate (PC) and the blend PC/ABS contained in WEEE streams, including black plastics, to increase their recycling rate, and to enhance plastics circularity. Raman spectral analysis was carried out with two lasers of different excitation wavelengths (785 nm and 1064 nm) and varying setting parameters (laser power, integration time, focus distance) with the aim at reducing the fluorescence.

View Article and Find Full Text PDF

Microbial induced carbonate precipitation (MICP) shows great potential for metals recovery from secondary sources, which is vital for circular economy. This study explores the feasibility of using Sporosarcina pasteurii for MICP to recover copper (Cu) and zinc (Zn) from acidogenic anaerobic digestates at laboratory scale. Pre-cultured S.

View Article and Find Full Text PDF

Printed circuit boards represent an extraordinarily challenging fraction for the recycling of waste electric and electronic equipment. Due to the closely interlinked structure of the composing materials, the selective recycling of copper and closely associated precious metals from this composite material is compromised by losses during mechanical pre-processing. This problem could partially be overcome by a better understanding of the influence of particle size and shape on the recovery of finely comminuted and well-liberated metal particles during mechanical separation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!