Multispectral imaging: Review of current applications.

Surv Ophthalmol

Moorfields Eye Hospitals UAE, Abu Dhabi, United Arab Emirates. Electronic address:

Published: June 2023

AI Article Synopsis

  • Multispectral imaging (MSI) is a specialized imaging method that captures detailed layers of the retina and choroid, helping to identify various eye conditions like retinovascular disorders and choroidal lesions.!* -
  • The technology works by measuring light reflectance from both healthy and diseased tissue, revealing information about pigment absorption and various tissue interfaces.!* -
  • Recent advancements in MSI include the development of maps that show blood oxygen levels in the eye, enhancing our understanding of lesions and improving the interpretation of reflectance differences in specific retinal layers.!*

Article Abstract

Multispectral imaging (MSI) is a unique layer-by-layer imaging technique that allows the visualization of a wide array of retinal and choroidal pathologies including retinovascular disorders, retinal pigment epithelial changes, and choroidal lesions. Herein, we summarize the basic imaging principles and current applications of MSI together with recent technology advances in the field. MSI detects reflectance signal from both normal chorioretinal tissue and pathological lesions. Either hyperreflectance or hyporeflectance reveals the absorption activity of pigments such as hemoglobin and melanin and the reflection from interfaces such as the posterior hyaloid. Advances in MSI technique include creation of a retinal and choroidal oxy-deoxy map that could provide a better understanding of blood oxygen saturation within lesions as well as better interpretation of reflectance phenomenon of MSI images such as the different reflectance from the Sattler and Haller layers described in this review.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.survophthal.2023.06.004DOI Listing

Publication Analysis

Top Keywords

multispectral imaging
8
current applications
8
retinal choroidal
8
msi
5
imaging review
4
review current
4
applications multispectral
4
imaging msi
4
msi unique
4
unique layer-by-layer
4

Similar Publications

Molecular Cocrystal Strategy for Retinamorphic Vision with UV-Vis-NIR Perception and Fast Recognition.

ACS Nano

January 2025

State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China.

Neuromorphic vision sensors capable of multispectral perception and efficient recognition are highly desirable for bioretina emulation, but their realization is challenging. Here, we present a cocrystal strategy for preparing an organic nanowire retinamorphic vision sensor with UV-vis-NIR perception and fast recognition. By leveraging molecular-scale donor-acceptor interpenetration and charge-transfer interfaces, the cocrystal nanowire device exhibits ultrawide photoperception ranging from 350 to 1050 nm, fast photoresponse of 150 ms, high specific detectivity of 8.

View Article and Find Full Text PDF

Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer with a 5-year survival rate of 12%. It has two major molecular subtypes: classical and basal, regulated by the master transcription factors (MTFs) GATA6 and ΔNp63, respectively.

Objective: This study sought to uncover the transcriptional regulatory mechanisms controlling PDAC subtype identity.

View Article and Find Full Text PDF

Interfered by external factors, the receptive field limits the traditional CNN multispectral remote sensing building change detection method. It is difficult to obtain detailed building changes entirely, and redundant information is reused in the encoding stage, which reduces the feature representation and detection performance. To address these limitations, we design a Siamese network of shared attention aggregation to learn the detailed semantics of buildings in multispectral remote sensing images.

View Article and Find Full Text PDF

The mid-wave multispectral detector combines the traditional spectrometer and infrared detector technologies to provide image information and spectral information at the same time, which has an important role in both civil and military fields. To solve the working band limitation and low energy utilization, this paper presents an integrated superlattice mid-wave multispectral hypersurface detector that can be used for computational multispectroscopy for the first time, which consists of photonic crystal (PC) plates of GaSb material, and uses PC microstructures to modulate the incident spectra, which can be used to reconstruct incident signals with computational multispectroscopy methods. In this paper, the finite difference time domain method (FDTD) is used to simulate the structural parameters of different PCs, and finally calculate the correlation coefficients of the transmission spectra of the different structures as well as the energy utilization rate.

View Article and Find Full Text PDF

Underwater optical imaging, especially in coastal waters, suffers from reduced spatial resolution and contrast by forward scattered light. With the increased number of hyper- and multi-spectral imaging applications, the effect of the point spread function (PSF) at different spectral bands becomes increasingly more relevant. In this work, extensive laboratory measurements of the PSF at 450, 500, 550, 600 and 650 nm in different turbidity have been carried out.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!