Background: Multidrug-resistant (MDR) bacteria-induced VAP often has high lethality. We present this systematic review and meta-analysis to assess the risk factors for MDR bacterial infection in patients with VAP.
Methods: PubMed, EMBASE, Web of Science, and Cochrane Library were searched for studies regarding MDR bacterial infection in VAP patients, from Jan 1996 to Aug 2022. Study selection, data extraction, and quality assessment of included studies were conducted by two reviewers independently, and potential risk factors for MDR bacterial infection were identified.
Results: Meta-analysis showed that the score of the Acute Physiology and Chronic Health Evaluation II (APACHE-II) [OR = 1.009, 95% (CI 0.732, 1.287)], Simplified Acute Physiology Score II (SAPS-II) [OR = 2.805, 95%CI (0.854, 4.755)], length of hospital-stay before VAP onset (days) [OR = 2.639, 95%CI (0.387, 4.892)], in-ICU duration [OR = 3.958, 95%CI (0.894, 7.021)], Charlson index [OR = 1.000, 95%CI (0.889, 1.111)], overall hospital-stay [OR = 20.742, 95%CI (18.894, 22.591)], Medication of Quinolones [OR = 2.017, 95%CI (1.339, 3.038)], medication of carbapenems [OR = 3.527, 95%CI (2.476, 5.024)], combination of more than 2 prior antibiotics [OR = 3.181, 95%CI (2.102, 4.812)], and prior use of antibiotics [OR 2.971, 95%CI (2.001, 4.412)] were independent risk factors of MDR bacterial infection in VAP patients. Diabetes and mechanical ventilation duration before VAP onset showed no association with risk for MDR bacterial infection.
Conclusions: This study has identified 10 risk factors associated with MDR bacterial infection in VAP patients. Identification of these factors would be able to facilitate the treatment and prevention of MDR bacterial infection in clinical practice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jiac.2023.06.008 | DOI Listing |
Front Immunol
January 2025
Department of Medical Laboratory, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China.
Background: Multidrug-resistant Klebsiella pneumoniae (MDR-KP) infections pose a significant global healthcare challenge, particularly due to the high mortality risk associated with septic shock. This study aimed to develop and validate a machine learning-based model to predict the risk of MDR-KP-associated septic shock, enabling early risk stratification and targeted interventions.
Methods: A retrospective analysis was conducted on 1,385 patients with MDR-KP infections admitted between January 2019 and June 2024.
Infect Drug Resist
January 2025
Center for Infectious Diseases Research (CIDR) and WHO Collaborating Center for Reference and Research on Bacterial Pathogens, American University of Beirut, Beirut, Lebanon.
Introduction: Multidrug resistant (MDR) Gram-negative bacterial infections are considered a major public health threat. The objectives of this study were to describe the epidemiology, potential contributing factors, and antimicrobial resistance patterns associated with infections caused by MDR Gram-negative bacteria (GNB) in non-immunocompromised children and adolescents.
Methods: This was a retrospective observational study conducted at the American University of Beirut Medical Center (AUBMC) from 2009 to 2017.
Microb Pathog
January 2025
Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan. Electronic address:
Multi-drug resistant (MDR) Acinetobacter baumannii accounts for high mortality rates in hospital-acquired infections. Colistin is the last resort treatment despite nephrotoxic effects and the emergence of colistin resistant A. baumannii.
View Article and Find Full Text PDFJ Mol Graph Model
January 2025
Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Gomtinagar Extension, Lucknow, 226028, India; Research Cell, Amity University Uttar Pradesh, Lucknow Campus, India. Electronic address:
The Acinetobacter baumannii is a member of the "ESKAPE" bacteria responsible for many serious multidrug-resistant (MDR) illnesses. This bacteria swiftly adapts to environmental cues leading to the emergence of multidrug-resistant variants, particularly in hospital/medical settings. In this work, we have demonstrated the outer membrane protein 33-36 (Omp33-36) porin as a potential therapeutic target in A.
View Article and Find Full Text PDFWest Afr J Med
September 2024
Medical Microbiology & Parasitology Department, University of Ilorin, Ilorin, Nigeria. Email:
Background: Neonatal sepsis (NNS) is a known cause of morbidity and mortality especially in developing countries. The global resistance scourge may worsen the management outcomes of NNS. This study aims to determine the current profile of bacteriological agents of NNS, their resistance status and associated mortality in our setting.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!