Graphene on SiC (0001‾) tends to grow in multiple layers and does not have a single orientation relation with the SiC substrate. It has been considered impossible to control the rotation angle of multilayer graphene on SiC (0001‾). In this study, we grew graphene on off-axis SiC substrates with various off angles from 0° to 8° and investigated their in-plane rotation and electronic structures systematically. As the off angle toward the [112‾0]direction increased, graphene rotated by 30° with respect to SiC became less dominant and instead, graphene rotated by 30 ± 2.5° appeared. We also found that the uniformity of the graphene rotation angle was relatively high on SiC substrates with a small off angle toward the [11‾00]direction. Our results suggest that the step-terrace structure defined by the substrate off-direction and angle plays an important role in the controllability of the rotation angle of graphene.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/acdebf | DOI Listing |
Sci Rep
January 2025
IBM T. J. Watson Research Center, Yorktown Heights, NY, 10598, USA.
The development of high-brightness electron sources is critical to state-of-the-art electron accelerator applications like X-ray free electron laser (XFEL) and ultra-fast electron microscopy. Cesium telluride is chosen as the electron source material for multiple cutting-edge XFEL facilities worldwide. This manuscript presents the first demonstration of the growth of highly crystalized and epitaxial cesium telluride thin films on 4H-SiC and graphene/4H-SiC substrates with ultrasmooth film surfaces.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Faculty of Engineering, University of Kragujevac, SestreJanjić 6, 34000 Kragujevac, Serbia.
Magnesium-based materials, which are known for their light weight and exceptional strength-to-weight ratio, hold immense promise in the biomedical, automotive, aerospace, and military sectors. However, their inherent limitations, including low wear resistance and poor mechanical properties, have driven the development of magnesium-based metal matrix composites (Mg-MMCs). The pivotal role of powder metallurgy (PM) in fabricating Mg-MMCs was explored, enhancing their mechanical and corrosion resistance characteristics.
View Article and Find Full Text PDFMembranes (Basel)
January 2025
Centre for Advanced 2D Materials, National University of Singapore, Singapore 117546, Singapore.
The large-scale implementation of 2D material-based membranes is hindered by mechanical stability and mass transport control challenges. This work describes the fabrication, characterisation, and testing of self-standing graphene oxide (GO) membranes cross-linked with oxides such as FeO, AlO, CaSO, NbO, and a carbide, SiC. These cross-linking agents enhance the mechanical stability of the membranes and modulate their mass transport properties.
View Article and Find Full Text PDFSmall
January 2025
School of Energy Science and Engineering and Jiangsu Key Laboratory of Process Enhancement and New Energy Equipment Technology, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China.
The application of micro-nano size photovoltaic waste silicon (wSi) as an anode material for lithium-ion battery holds significant practical potential; However, it faces a series of challenges related to the volume expansion of Si during cycling. In this study, a simple, efficient, and eco-friendly microwave method is proposed for the rapid preparation of graphene-coated silicon materials (wSi@rGO) in just a few seconds, in which graphene as the stable interface mitigates structural failure caused by significant volume expansion, enhances electron and ion conductivity, inhibits undesirable side reactions between silicon and electrolyte, and promotes the stability of solid electrolyte interface (SEI). Importantly, the instantaneous high temperature generated by microwaves facilitates the formation of interfacial SiC chemical bonds, which strengthen the interaction between Si and graphene, thereby reducing Si delamination.
View Article and Find Full Text PDFACS Nano
January 2025
Center for Interdisciplinary Science of Optical Quantum and NEMS Integration, School of Physics, Advanced Research Institute of Multidisciplinary Science, and School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China.
Two-dimensional in-plane transition-metal dichalcogenide (TMD) junctions have a range of potential applications in next-generation electronic devices. However, limited by the difficulties in ion implantation on 2D systems, the fabrication of the in-plane TMD junctions still relies on the lateral epitaxy of different materials, which always induces lattice mismatch and interfacial scattering. Here, we report the in-plane TMD junction formed with monolayer (ML) PtTe at the boundary of ML and bilayer graphene on SiC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!