Sensitive and anti-interference detection of targeted signal(s) in body fluids is one of the paramount tasks in biosensing. Overcoming the complication and high cost of antibody/aptamer-modification, surface-enhanced Raman spectroscopy (SERS) based on antibody/aptamer-free (AAF) substrates has shown great promise, yet with rather limited detection sensitivity. Herein, we report ultrasensitive and anti-interference detection of SARS-CoV-2 spike protein in untreated saliva by an AAF SERS substrate, applying the evanescent field induced by the high-order waveguide modes of well-defined nanorods for SERS for the first time. A detection limit of 3.6 × 10 M and 1.6 × 10 M are obtained in phosphate buffered saline and untreated saliva, respectively; the detection limits are three orders of magnitude improved than the best records from AAF substrates. This work unlocks an exciting path to design AAF SERS substrates for ultrasensitive biosensing, not limited to detection of viral antigens.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10247595 | PMC |
http://dx.doi.org/10.1016/j.bios.2023.115457 | DOI Listing |
Mikrochim Acta
January 2025
Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, School of Medicine, Yan'an University, Yan'an, Shaanxi, 716000, People's Republic of China.
Dexamethasone sodium phosphate (DSP) and betamethasone sodium phosphate (BSP) imprinted hydrogels embedded with two-dimensional photonic crystals (2DPC) were developed as hormones-sensitive photonic hydrogel sensors with highly sensitive, selective, anti-interference and reproducible recognition capability. The DSP/BSP molecularly imprinted photonic hydrogels (denoted as DSP-MIPH and BSP-MIPH) can specifically recognize DSP/BSP by rebinding the DSP/BET molecules to nanocavities in the hydrogel network. This recognition is enabled by the similar shape, size, and binding sites of the nanocavities to the target molecules.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China.
Traditional sensors struggle in complex human environments, particularly with humidity and strain detection requiring high sensitivity and robust anti-interference. This work introduces a flexible, miniaturized, low-cost dual-mode sensor that combines a novel resonator structure with a chemically modified conducting polymer, enabling simultaneous strain and humidity detection alongside high anti-interference performance sensitivity and wireless transmission.
View Article and Find Full Text PDFJ Chromatogr A
January 2025
College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying 257343, China. Electronic address:
Efficient enrichment of analytes and purification of matrices are crucial for the highly sensitive detection and monitoring of pesticides in traditional Chinese herbs. This work prepared magnetic ionic liquid-controlled covalent organic framework (IL-COF@FeO) as the sorbent via a simple in-situ precipitation polymerization and thiolene "click" strategy. The IL-COF@FeO exhibited remarkable adsorption performance towards pyrethroids within 5 min.
View Article and Find Full Text PDFMikrochim Acta
January 2025
College of Chemistry, Chemical Engineering & Environmental Science, Minnan Normal University, Zhangzhou, 363000, China.
The detection of cysteine (Cys) and homocysteine (Hcy) in biological fluids has great significance for early diagnosis, including Alzheimer's and Parkinson's disease. The simultaneous determination of Cys and Hcy with a single probe is still a huge challenge. To enlarge the differences in space structure (line and ring) and energy (-721.
View Article and Find Full Text PDFChempluschem
January 2025
Jiangsu Agri-animal Husbandry Vocational College, Department of Pharmacy, CHINA.
With enrichment of tetracycline (TC) in ecosystems, its accurate detection has become a major concern. Noble-metal nano-particles have attracted great interest as potential materials for sensing applications because of their remarkable electrical properties and adaptability. Herein, a novel electro-chemical detection technique based on carbon nano-tubes (CNTs) as the support material is developed to detect TC with high precision.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!