Construction of chub mackerel (Scomber japonicus) fishing ground prediction model in the northwestern Pacific Ocean based on deep learning and marine environmental variables.

Mar Pollut Bull

Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, P.R.China, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China. Electronic address:

Published: August 2023

Accurate prediction of the central fishing grounds of chub mackerel is substantial for assessing and managing marine fishery resources. Based on the high-seas chub mackerel fishery statistics and multi-factor ocean remote-sensing environmental data in the Northwest Pacific Ocean from 2014 to 2021, this article applied the gravity center of the fishing grounds, 2DCNN, and 3DCNN models to analyze the spatial and temporal variability of the chub mackerel catches and fishing grounds. Results:1) the primary fishing season of chub mackerel fishery was April-November which catches were mainly concentrated in 39°∼43°N, 149°∼154°E. 2) Since 2019, the annual gravity center of the fishing grounds has continued to move northeastward; the monthly gravity center has prominent seasonal migratory characteristics. 3) 3DCNN model was better than the 2DCNN model. 4) For 3DCNN, the model prioritized learning information on the most easily distinguishable ocean remote-sensing environmental variables in different classifications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2023.115158DOI Listing

Publication Analysis

Top Keywords

chub mackerel
20
fishing grounds
16
gravity center
12
pacific ocean
8
environmental variables
8
mackerel fishery
8
ocean remote-sensing
8
remote-sensing environmental
8
center fishing
8
3dcnn model
8

Similar Publications

Primordial germ cells (PGCs), the progenitors of gametes, are essential for teleost reproduction. While their formation is conserved across teleosts, the activation, migration routes, and localization periods vary among species. In this study, we developed a novel transgenic line, Tg(ddx4:TcCFP13-nanos3), based on the Nile tilapia genome, to label PGCs with clear fluorescent signals in the freshwater angelfish (Pterophyllum scalare).

View Article and Find Full Text PDF

Palmitoylation-mediated NLRP3 inflammasome activation in teleosts highlights evolutionary divergence in immune regulation.

Zool Res

January 2025

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China.

NLRP3 inflammasome activation is pivotal for cytokine secretion and pyroptosis in response to diverse stimuli, playing a crucial role in innate immunity. While extensively studied in mammals, the regulatory mechanisms governing NLRP3 activation in non-mammalian vertebrates remain largely unexplored. Teleosts, as basal vertebrates, represent an ideal model for exploring the evolutionary trajectory of inflammasome regulation.

View Article and Find Full Text PDF

Galectins exhibit a variety of biological functions through interactions with their ligands, including galactose and its derivatives. Tandem-repeat galectins, such as Galectin-8, can act as pattern recognition receptors to aggregate and neutralize bacterial pathogens. In this study, Galectin-8 was identified in Trachinotus ovatus (golden pompano).

View Article and Find Full Text PDF

Exploring the immunological functions of thioredoxin domain-containing protein 17 (TXNDC17) in chub mackerel (Scomber japonicus): Immune response and cellular redox homeostasis.

Dev Comp Immunol

January 2025

Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea. Electronic address:

All organisms have evolved sophisticated antioxidant networks and enzymes to counteract reactive radicals, among which thioredoxin (Trx) systems are especially noteworthy. Thioredoxin domain-containing protein 17 (TXNDC17) is a ubiquitously expressed enzyme with oxidoreductase activity belonging to the Trx protein family. This study successfully uncovered and analyzed the TXNDC17 gene in Scomber japonicus (SjTXNDC17).

View Article and Find Full Text PDF

Fish diversity, an important indicator of aquatic ecosystem health, is declining due to water pollution, overfishing, climate change, and invasive species. Effective surveying and monitoring are required to protect fish diversity. Here, a high-sensitivity environmental DNA (eDNA) metabarcoding technique was used to investigate fish diversity in the Danjiang River, Shaanxi Province, China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!