Coral larval settlement relies on biogenic cues such as those elicited by microbial biofilm communities, a crucial element of coral recruitment. Eutrophication can modify these biofilm-associated communities, but studies on how this affects coral larval settlement are limited. In this study, we developed biofilm communities on glass slides at four sites with increasing distance from a mariculture zone. Biofilms farthest from the mariculture area were more effective at inducing the settlement of Acropora tenuis larvae. These biofilms were characterized by a greater proportion of crustose coralline algae (CCA) and gammaproteobacterial taxa compared to biofilms from sites closer to the mariculture zone, which had a greater proportion of cyanobacteria and no CCA. These findings suggest that nutrient enrichment due to mariculture activities alters the composition of biofilm-associated microbiome at nearby reef sites and indirectly causes poor coral larval settlement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marpolbul.2023.115138 | DOI Listing |
Environ Microbiome
January 2025
Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.
Background: Recovery of degraded coral reefs is reliant upon the recruitment of coral larvae, yet the mechanisms behind coral larval settlement are not well understood, especially for non-acroporid species. Biofilms associated with reef substrates, such as coral rubble or crustose coralline algae, can induce coral larval settlement; however, the specific biochemical cues and the microorganisms that produce them remain largely unknown. Here, we assessed larval settlement responses in five non-acroporid broadcast-spawning coral species in the families Merulinidae, Lobophyllidae and Poritidae to biofilms developed in aquaria for either one or two months under light and dark treatments.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratorio de Bioinformática Microbiana, Programa Académico de Ingeniería en Biotecnología, Universidad Politécnica de Sinaloa, Carretera Municipal Libre Km. 3 Mazatlán-Higueras, 82199, Mazatlán, Sinaloa, Mexico.
Dispersal is an important life history trait that plays a key role in the demography and evolution of species. We employed a combined approach of DNA sequencing and transmission electron microscopy to examine the changes in the microbiome during the ontogeny and dispersal of the coral-excavating sponge Thoosa mismalolli. The results show that sponge can acquired their associated bacteria via both vertical (VT) and horizontal transmission (HT).
View Article and Find Full Text PDFBMC Genomics
January 2025
Sesoko Marine Station, Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa, 905-0227, Japan.
Background: Rising seawater temperatures increasingly threaten coral reefs. The ability of coral larvae to withstand heat is crucial for maintaining reef ecosystems. Although several studies have investigated coral larvae's genetic responses to thermal stress, most relied on pooled sample sequencing, which provides population-level insights but may mask individual genotype variability.
View Article and Find Full Text PDFEcol Evol
January 2025
Minderoo Foundation Perth Western Australia Australia.
Coral reefs worldwide are threatened by increasing ocean temperatures because of the sensitivity of the coral-algal symbiosis to thermal stress. Reef-building corals form symbiotic relationships with dinoflagellates (family Symbiodiniaceae), including those species which acquire their initial symbiont complement predominately from their parents. Changes in the composition of symbiont communities, through the mechanisms of symbiont shuffling or switching, can modulate the host's thermal limits.
View Article and Find Full Text PDFBiology (Basel)
December 2024
Departamento de Ecologia, IBRAG, Universidade do Estado do Rio de Janeiro, Rua Francisco Xavier 524, PHLC, Sala 220, Rio de Janeiro 20559-900, RJ, Brazil.
When a species is introduced in a new location, it is common for it to establish itself when it finds favorable conditions in the receptor community with regard to interspecific interactions with native species. The azooxanthellate corals coccinea and are invasive species introduced in the Caribbean Sea, the Gulf of Mexico, and the Brazilian Southwest Atlantic. They are successful competitors for space, have multiple reproductive modes, and have high larval dispersion and recruitment, but studies on food and trophic relationships of the genus are still scarce.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!