Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Quantitative phase microscopy (QPM) literally images the quantitative phase shift associated with image contrast, where the phase shift can be altered by laser heating. In this study, the thermal conductivity and thermo-optic coefficient (TOC) of a transparent substrate are simultaneously determined by measuring the phase difference induced by an external heating laser using a QPM setup. The substrates are coated with a 50-nm-thick titanium nitride film to photothermally generate heat. Then, the phase difference is semi-analytically modeled based on the heat transfer and thermo-optic effect to simultaneously extract the thermal conductivity and TOC. The measured thermal conductivity and TOC agree reasonably well, indicating the potential for measuring the thermal conductivities and TOCs of other transparent substrates. The concise setup and simple modeling differentiate the advantages of our method from other techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.489182 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!